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Resumo

A utilização de ferramentas de alta fidelidade de mecânica de fluidos computacional na

análise e design (projeto) de turbomáquinas tem vindo a aumentar nos últimos anos, resul-

tado do aumento da capacidade computacional e melhorias nos métodos numéricos. Estas

ferramentas são muito frequentemente utilizadas em ambientes de otimização numérica,

onde os algoritmos de otimização baseados em gradientes são bastante comuns devido à

sua eficiência. Nos casos em que os problemas de otimização contêm um elevado número

de variáveis de design, como acontece em problemas típicos de design de turbomáquinas,

o recurso ao método das variáveis adjuntas no cálculo dos gradientes prova-se bastante

benéfico, uma vez que proporciona uma maneira de obter sensibilidade exatas de funções

com um custo computacional quase independente do número de variáveis de design. A

consideração do acoplamento entre os vários andares adjacentes de uma turbomáquina

multi-andar na sua análise é de extrema importância, uma vez que e a interação entre as

várias pás dos diferentes andares, quer na direção do escoamento, quer na oposta, causa

complexos fenómenos aerodinâmicos. Para a simulação de andares de turbomáquinas

tendo em conta estes fenómenos de acoplamento, o tratamento de plano de mistura é dos

métodos mais utilizados e é atualmente uma ferramenta standard em ambientes de design

industrial. Esta tese apresenta a formulação e descrição da implementação da parte ad-

junta da interface de plano de mistura num código adjunto para aplicação em escoamentos

em turbomáquinas, proporcionando assim a sua capacidade de contemplar o acoplamento

dos vários andares na sua análise. O código adjunto é desenvolvido utilização um método

híbrido denominado adjoint em que as derivadas parciais do sistema de equações adjuntas

são obtidas através da diferenciação automática do código direto. A implementação é

verificada com aproximação de diferenças finitas, através da qual, é confirmada a cor-

reta implementação do código. O código adjunto é posteriormente utilizado na análise

de sensibilidade de várias métricas de performance em relação a variáveis que definem a

geometria das pás da turbomáquina e condições fronteira do escoamento, através do plano

de mistura, evidenciando assim o acoplamento físico em turbomáquinas multi-andar.

Palavras-chave: Plano de mistura; Análise de sensibilidade; Diferenciação Au-

tomática; Variáveis Adjuntas Discretas; Otimização de forma
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Abstract

The use of high-fidelity computational fluid dynamics (CFD) tools in turbomachinery

design has seen a continuous increase as a result of computational power growth and the

improvement of numerical methods. These tools are often used in optimization environ-

ments, where gradient-based optimization algorithms are the most common due to their

efficiency. In cases where the optimization contains a large number of design variables, as

is often the case in turbomachinery design problems, the adjoint approach for calculating

the gradients is beneficial, as it provides a way of obtaining exact function sensitivities

with a computational cost that is nearly independent of the number of design variables.

Taking the coupling between adjacent blade rows of a turbomachine in its analysis if of

the utmost importance, as the interaction between the various rows both in the direction

of the flow and in the opposite direction can cause complex phenomena that considering

a single row will not capture. The most commonly used method to address these effects

(i.e. coupling in the simulation of multiple rows) is the mixing-plane treatment, which

has become a standard industrial tool in the design environment. This thesis presents the

formulation and implementation of the adjoint counterpart of the mixing-plane interface

in a legacy adjoint solver for sensitivity analysis of turbomachinery applications to handle

multi-row problems. The solver is developed using the discrete ADjoint approach, where

the partial derivatives required for the assembly of the adjoint system of equations are

obtained using automatic differentiation tools. The differentiation is not performed in

one go, but, instead, the individual routines that perform the various steps of the mixing-

plane algorithm are differentiated and the final differentiated routine, corresponding to

the differentiated mixing-plane is assembled by hand. The implementation is verified with

finite-difference approximations and the sensitivity of several performance metrics relative

to neighbor blade/hub row geometry and boundary conditions are shown to highlight the

physical coupling in multi-row turbomachines.

Keywords: Mixing-plane; automatic differentiation; discrete adjoint; sensitivity

analysis; shape optimization
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Chapter 1

Introduction

This section will introduce the motivation for the work presented in this thesis, followed

by an introduction to the various areas it encompasses. A review of the state-of-the-art in

adjoint-based sensitivity analysis with applications to turbomachinery is presented next.

Lastly, the expected contributions to the state-of-the-art resulting from the work here

presented are described.

1.1 Motivation

Turbomachines transfer energy either to or from continuously flowing fluid by the dynamic

action of one or more moving blade rows. Their name origins from the Latin word turbo,

which means "that which spins". As schematically represented in figure 1.1, they are

major components of aircraft, marine, space and land propulsion systems (blue); hydraulic,

gas and steam turbines for energy production (green); industrial pipeline and processing

equipment such as gas, petroleum, and water pumping plants (black); and a wide variety

of other applications (e.g. heat-assist pumps, industrial compressors, refrigeration plants,

etc).

After many decades of research in the field of jet propulsion, modern turbomachinery

(and specially modern turbofan engines) are at a stage where it is very difficult to obtain

further improvements. However, given the high number of turbomachine components in

operation, particularly aircraft engines, a small increase in efficiency could result in a large

global gain, being it in cost reduction or pollution reduction. Current predictions indicate

an increase in the growth of these numbers.
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Figure 1.1: Schematic of the various areas of application of turbomachinery.

According to the International Air Transport Association’s (IATA) 20-Year Air Passen-

ger Forecast [1], 7.8 billion passengers are expected to travel in 2036, a near doubling of the

4 billion air travelers flown in 2017. The prediction is based on a 3.6% average Compound

Annual Growth Rate noted in the release of the latest update to the association’s 20-Year

Air Passenger Forecast. According to Alexander de Juniac, CEO and Director General of

IATA:

"All indicators lead to growing demand for global connectivity. The world needs

to prepare for a doubling of passengers in the next 20 years. It’s fantastic news

for innovation and prosperity, which is driven by air links. It is also a huge

challenge for governments and industry to ensure we can successfully meet this

essential demand".

The report entitled "Flightpath 2050 Europe’s Vision for Aviation" and published by the

Advisory Council for Aeronautics Research in Europe [2] established a set of targets to

be met by 2050 (relative to the capabilities of typical new aircraft in 2000). Amongst the

targets are the following:

• Reduction of CO2 by 75% per passenger kilometer;

• Reduction of NOx emissions by 80%;

• Reduction of perceived noise emission of flying aircraft by 65%.
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As such, there is much interest and research being conducted on ways to make aircraft

more efficient, not only to make air travel less expensive and more generalized, but also

to comply to the stricter pollution rules.

With this continued increase in number of flights, so as the global consumption of fuel,

with the total worldwide fuel consumption of commercial airlines in 2017 being around

90 billion (90 × 109) gallons [3]. The cost of fuel to an airline has a big impact on its

profit margin, as it typically represents more than 20% of their total operating costs [3].

Figure 1.2 presents the global airline industry’s net profits and fuel costs, where an inverse

trend between the two is visible. This relatively large fraction of the total expenses in fuel,

Figure 1.2: Total global airline industry’s fuel costs and net profits.

and particularly the differences of magnitude between fuel costs and net profits, makes the

increase of efficiency (and consequent reduction of fuel costs) very desirable in economic

terms. As an exercise, assuming a particular aircraft model, we can predict the economic

impact that an increase of 1% in engine efficiency would have on a hypothetic airline.

Assuming the operating costs of a Boeing 757-200, presented in table 1.1 for an average

daily utilization of 11.3 block-hours, the savings obtained from the efficiency increase

(represented by a decrease of 1% in fuel cost) would be of around $2.2M annually, if we

consider a fleet of 100 aircraft. Particularly for smaller airlines, where the low profit margins

maintain the companies very close to the break-even point, such saving could potential

help the company cross that threshold. Such increase in efficiency is not easily achievable,

and requires increases in efficiency in many of the components of the engine. Nonetheless,

this hypothetical results emphasizes the importance of improving the performance of

turbomachines (jet engines, in this particular case) in terms of economical benefits.
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Fuel Cost Total Cost Fuel Cost Total Cost Fuel Cost Total Cost
per block hour per day per year

$548.00 $2,550.00 $6,192.40 $28,815.00 $2,204,494.40 $10,258,140.00
$542.52 $2,544.52 $6,130.48 $28,753.08 $2,182,449.46 $10,236,095.06

Savings: $22,044.94

(for 100 aircraft) $2,204,494.40

Table 1.1: Hypothetical savings of increasing fuel efficiency of a Boeing 757-200 on a fleet
of 100 aircraft.

Additional future savings from increased efficiency are also expected when carbon taxes

[4] become a reality since the carbon emissions are proportional to the jet fuel consumption,

which is a particular type of hydrocarbon molecules. However, these are presently hard to

quantify as the international legislation is still being outlined.

The demand for improvement on turbomachinery efficiency does not come only from

the aeronautical industry but also from the energy production industry, where higher

efficiencies are also required in order to comply to all the directives established for the

future. The "Roadmap on Turbomachinery Research 2014 – 2020 " by EUTurbines [5]

states that more than 80% of the electricity generated worlwide is produced by gas and

steam turbines being applied at both coal, nuclear, gas, biomass and solar-thermal power

plants. The same report also mentions that the International Energy Agency estimates

that in order to deliver a 50% of global emission reduction by 2050, 24% will need to come

from end use fuel efficiency, 12% from end use electricity efficiency and 7% from power

generation efficiency. Some measures to improve turbine efficiency are also mentioned:

increasing turbine inlet temperature and compressor pressure ratio in parallel with cooling

air reduction, more advanced aerodynamic concepts and loss reduction.

These demands and predictions highlight the necessity to use all the tools available to

study and improve the performance and efficiency of turbomachines.

1.2 Overview of Turbomachines

As previously mentioned, turbomachines transfer energy either to or from a continuously

flowing fluid by the dynamic action of one or more moving blade rows. Depending on the

direction of the flow of energy, we can have a compressor (imparts energy to the fluid) or
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(a) Axial (b) Radial (c) Mixed-flow

Figure 1.3: Classification of the turbomachines by the stream direction in relation to the
axis of the shaft [6].

a turbine (removes energy from the fluid).

1.2.1 Types of turbomachines

Turbomachines can also be classified according to the path the flow follows, relative to

axis of rotation, as it runs through it. They can be either axial, radial or mixed-flow (see

figure 1.3). If the meridional flow path is axial, we have an axial turbomachine. If the

flow path is predominantly radial, we have a radial (or centrifugal) turbomachine. The

mixed-flow turbomachine has, like the name implies, a flow path that is partially axial and

partially radial. The fluid that flows through a turbomachine also affects its denomination.

As an example, a compressor of the axial type is called an axial flow compressor. If the

same machine used liquid as the moving fluid, it would be called an axial flow pump.

1.2.2 Flowpath and Thermodynamics

The simplest gas turbine is composed of a compressor, a combustion chamber and a turbine.

The thermodynamic processes that the fluid is subjected to as it goes trough this simple

gas turbine can be represented by the schematic and idealized thermodynamic cycle (also

known as the Brayton cycle [7]) presented in figure 1.4. The compressor first imparts

energy into the fluid by changing the stagnation (or total) enthalpy, kinetic energy and

stagnation pressure of the fluid (1-2). In the combustion chamber, energy is added to the

flow by means of heat transfer from the combustion of the fuel (2-3). The turbine then

extracts energy from the fluid and typically transfers a part of it to the compressor by

means of a rotating shaft (2-4). In a jet engine, this work performed on the rotating shaft
1Image by Duk [8]
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Figure 1.4: Schematic of simple turbomachine and respective thermodynamic cycle 1.

is the minimal to keep the compressors and other rotating parts spinning. The energy that

is not used for this leaves the turbine as kinetic energy (of the exhaust gases), producing

thrust.

Most modern turbomachines are composed of a series of compressors and/or turbines.

Each of these individual compressors or turbines is typically designated as a stage and it

consists in two rows with blades on its circumference, one that rotates (rotor) and other

that is fixed to the casing (stator). The stationary blades can also be called guide vanes

and, when located at the beginning of a series of compressor stages or at the end of a

series of turbine stages are denominated inlet guide vanes or exit guide vanes, respectively.

In figure 1.5 we can see a schematic representation of a typical turbofan, the most

common type of commercial jet engines. Traveling downstream, starting from the inlet,

the air is first accelerated by the fan, whose rotation is typically maintained by the low-

pressure shaft. A great part of the flow, called bypass flow, is directed outside of the

engine. The rest of the flow, called core flow, is then compressed by the low-pressure

compressor (also rotating with the low-pressure shaft). The last step before entering the

combustion chamber is another compression performed by the high-pressure compressor.

In the combustion chamber, the flow is energized by the combustion of the fuel. The flow

then leaves the combustion chamber into the high-pressure turbine, which expands the flow

and, in doing so, providing work into the high-pressure shaft. Before leaving the engine

through the nozzle, the low-pressure turbine stages further expand the flow, providing

work to the low-pressure shaft.

2image by K. Aainsqatsi [9]
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Figure 1.5: Schematic of a typical turbofan
2

1.2.3 Secondary Flows

The flow inside turbomachine components is highly three-dimensional and unsteady, par-

ticularly in high pressure compressors with high blade loading and small aspect ratio

blades [10]. However, even in low pressure turbine components [11], the endwall (tip and

hub) regions can be affected by 3D phenomena such as the tip clearance vortex or the

horseshoe vortex, amongst others, that are responsible for the loss of efficiency. These

phenomena developed in high-pressure compressor blades are represented in figure 1.6.

Figure 1.6: Representation of secondary flow phenomena in high-pressure compressor
blades (figure by Beselt, Eck, and Peitsch [10]).

In steady-state simulations, albeit not capturing these phenomena in detail, the endwall
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is still a very sensitive region, as it is where the two boundary layers, from the hub/casing

and blade, merge.

As such, by properly controlling the flow in these critical regions, the losses can be

minimized. Legacy designs have relied on the expertise of the designers to handle such

challenges, but the usage of numerical design tools can open the way to further explore

large sets of interacting design parameters whose simultaneous handling might proved too

difficult if done manually.

1.3 Numerical Optimization

A field of research that has seen much growth in the past decades, partly due to the

increasing available computational power is the use of external and internal flow simulations

using high-fidelity Computational Fluid Dynamics (CFD) models. They have become a

routine, with the emerging trend being to use optimization techniques as part of the

design process, both in academia and industry [12]. Given the nature of the flow models,

a numerical simulation may take hours or even days to complete, as larger and larger

problems keep being considered. An optimization, which may require hundreds of function

calls to find an optimum, may therefore lead to a prohibitive time requirement. The choice

of optimization algorithm is therefore very important if results are to be obtained within

a realistic timeframe.

In a typical CFD optimization problem, the objective is to minimize (or maximize) a

performance metric (or a set of metrics) which are defined by some design variables and

by the solution of a set of governing equations. This can be defined mathematically as

minimize I(α, q(α))

w.r.t. α,

subject to C(α, q(α)) = 0,

R(α, q(α)) = 0,

(1.1)

where I is the set of objective functions (performance metric) to be minimized, α is the

set of design variables, q is the solution obtained from solving the governing equations

represented by R. A set of constrains is usually considered, and are here represented by

C. In turbomachinery, the typical performance metrics are efficiency, mass flow, pressure
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ratio and the temperature at a certain region of the component in analysis, amongst

others. The design variables usually consist in parameters that define the geometry of

the blade or operating conditions. The optimization is typically constrained by certain

geometry parameters or performance metrics such as the mass flow, which one might want

to maintain, while improving other metrics.

When choosing a numerical optimization method to solve the problem above [13], one

can select from two main categories: deterministic and heuristics (see figure 1.7). Heuristic

Deterministic Heuristic

Gradient-free Gradient-based

1-D Optimization N-D Optimization

Unconstrained Constrained

Optimization Methods

Figure 1.7: Schematic representation of the various categories of optimization algorithms.

methods make use of concepts found in nature to find the global optimal solution. This

category includes methods such as Genetic Algorithms [14], Ant Colonies [15], Differential

Evolution [16], Particle Swarm [17], etc. Deterministic methods take advantage of the

analytical properties of the problem to generate a sequence of points that converge to

a local optimal solution. These can be Gradient-Free (GF) and Gradient Based (GB).

The first type of algorithms, like the name indicates, do not require the computation

of the gradient (or Hessian), needing only, much like the heuristic methods, to evaluate

the prescribed objective function a certain number of times. Examples of GF algorithms

are the Simplex [18], Golden search [19] or the Hooke-Jeeves [20]. Also much like the

heuristic methods, albeit being able to find (or approximate) the global minimum of a

function, and being usually the better choice for discrete search or discontinuous/non-

convex search spaces, they tend to require a very high number of those same function

evaluations, which can lead to the prohibitive time requirements mentioned above. GB

algorithms, on the other hand, use the information of the gradient or the Hessian of the

objective function (and/or constraints) to chose the best direction in the design space
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that leads to the optimal solution. This leads to much less function evaluations required

to achieve the closest minimum. If the objective function is known to be smooth and the

design variables are continuous, the GB algorithms are typically the best choice. The GB

class contains unconstrained (Seepest Descent [21], Conjugate Gradient [22], quasi-Newton

[23, 24], etc) and constrained (Feasible Direction [25], Reduced Gradient [26], SQP [13],

etc) algorithms, depending or not if they deal with the constraints of the optimization

problem. The difference in number of function calls between heuristic and GB algorithms

is evidenced in figure 1.8, where the optimization history of a function containing a local

and a global minimum is presented using a GB (figure 1.8a) and a Heuristic algorithm

(figure 1.8b). While the GB algorithm was able to find the closest minimum with a relative

low number of function evaluations, it could only find the minimum that was closest to

the initial guess (this can be avoided to some point by the use of multiple initial guesses).

The Heuristic method was able to find the global minimum without being stuck in the

local one, evidencing that for global optimization of a function, it may be the best option.

However, it required much more function evaluations to find the optimum than the GB

algorithm, which means that these algorithms are in general restricted to higher fidelity

computations, where the time requirements are higher. A conjugation of both algorithms

(a) GB algorithm. (b) Heuristic algorithm.

Figure 1.8: Optimization history of a function with local and global minima.

is a typical approach, where the design space is (roughly) globally optimized using an

Heuristic method, with the global optimum return by the optimizer being used as the

starting guess for the GB algorithm. Other method used with GB algorithms, to avoid

being stuck on a local minimum is the use of multiple starting points distributed in the

design space.
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Typically, in the preliminary design phase of a turbomachine (or even an aircraft),

low fidelity models (with low computational requirements) are used to allow the designer

to experiment various configurations and parameters to achieve a first iteration of the

design that is compliant with the requirements defined a-priori to be the goals for the

turbomachine. In this phase, the use of heuristic and gradient-free methods is advantageous,

as they allow a much broader search of the design space, and often the design variables

considered at this initial phase are discrete. It is after the preliminary design phase that

high-fidelity models (with high computational requirements) are used to fine tune the

detailed designs to reduce unwanted behaviors of the flow that lead to performance losses.

In this case, the efficiency of the GB algorithms provides a strong advantage and are

typically the chosen type of optimization algorithms.

A GB algorithm for unconstrained optimization of a smooth and continuous function

can be described as follows:

1. Initial guess: The iteration starts with number k = 0 at a starting point x0;

2. Test for convergence: If the convergence conditions are satisfied, the iterative pro-

cedure is stopped and xk is the optimal solution;

3. Compute the search direction: Compute the vector pk, which defines the direction

in n-space where the algorithm will search for the minimum;

4. Compute the step length: Find a positive scalar, αk, such that I(xk+αkpk) < I(xk);

5. Update the design variables: Set xk+1 = xk +αkpk and k = k+ 1; Go back to step

2.

Two subproblems can be identified in each iteration of this algorithm:

• Computing the search direction pk;

• Finding the optimal step size αk.

One of the simplest GB algorithms, the Steepest Descent, uses the gradient of the function,

gk = 5I(xk), as the search direction (pk = −gk/ ‖gk‖). Others, such as the Conjugate

Gradient or quasi-Newton algorithms, also use the previous history of the gradients to

compute the search direction at each iteration. Regardless of the selected GB algorithm,

they all require one computation of the gradient of the function per iteration. The second
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Figure 1.9: Different methods for computing the gradient of a function.

problem, finding the optimal step αk is an optimization problem on its own. The search

direction obtained from the gradient is a descent direction, guaranteeing that I can be

reduced by stepping along that direction. Ideally a global minimum of I(xk +αkpk) would

be found, with respect to αk, but this can greatly increase the computational (even finding

the local minimum can be too computationally expensive) effort and usually an inexact

line search is used to achieve adequate reductions of I at reasonable computational costs.

The fact that GB methods use the gradient (also known as derivative or sensitivity) to

move the solution towards the optimum in the design space, making them more efficient,

requires attention to the method of computation of the gradient information known as

sensitivity analysis methods. If the number of design variables is very large, the use of

traditional methods such as the finite-differences approximation can lead to prohibitive

computational time requirements. Since a turbomachinery optimization case can have up

to thousands of design variables, efficient gradient computation methods are a necessity.

Figure 1.9 presents various methods for computing the gradient of a function. The

first is the analytical methods. If the function to which the gradient is required can be

analytically differentiated [27], then that is the most efficient choice, as it computes the

derivative directly. This is however not the case for the majority of the cases, as typically

the functions are based on solutions computed from the iterative convergence of non-linear

systems of equations. The Finite-Difference (FD) [27] approximation method offers often

a simple way of computing the derivative of a set of objective functions relative to an

independent variable. As it is only able to produce the derivative to a single variable for

each function call, its computational cost is proportional to the number of independent

variables to analyze. This, allied to the fact that each function call may take several hours
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(or even days), makes this approach unappealable. FD approximations also suffer from a

high sensitivity to the perturbation step, which and is subjected to errors due to subtractive

cancellation. The Complex-Step (CS) method [28–30] is similar to the FD method, but

instead of perturbing the selected independent variable with a real perturbation, it uses a

complex perturbation. It does not suffer from subtractive cancellation and therefore much

smaller steps can be used, avoiding the problem of sensitivity to the perturbation step

inherent in the FD approximation. The computational cost of using such method is, like

FD, proportional to the number of design variables, and as such its use in the numerical

optimization of problems with a high number of design variables (as compared to the

number of functions of interest) is limited.

The adjoint method is able to produce exact derivatives with a computational cost that

is nearly independent of the number of design variables. It works by applying control theory

to Partial Differential Equations (PDE) [31]. Depending on the approach taken, continuous

or discrete, the control theory is either applied directly to the equations, resulting in adjoint

equations which are then discretized or applied to already discretized PDEs (see figure 1.10).

Both approaches have their advantages and disadvantages. While the continuous approach

Continuous PDE

nonlinear linear adjoint

Discretized PDE

Continuous approachDiscrete approach

Figure 1.10: Alternative approaches to obtain the discrete adjoint equations.

can be simpler to implement, and typically requires less computational time and memory

than a discrete implementation, the discrete approach is naturally consistent with the

direct solver. This is highly advantageous when using the adjoint solver in gradient-based

optimization, as it usually increases convergence. The discrete approach also allows the

use of Automatic Differentiation (AD) tools [32, 33], in an approach that mixes both the

advantages of the discrete adjoint with the fast development time allowed by automatic

differentiation.

The adjoint method has a wide span of applications, ranging from oceanography and
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geology to computer graphics simulation [34]. In CFD, due to the nature of the governing

equations and size of the typical numerical problems, the adjoint method has seen an

extensive range of applications in the previous decades. The introduction of the adjoint

method to the field of fluid mechanics was done by Pironneau [35]. Jameson further

extended the method to optimization of airfoil profiles [36] and wings [37]. More recently

it as been used in solving multi-point aerodynamic shape [38, 39] and aero-structural [40,

41] optimization problems, magneto-hydrodynamic flow control [42] and turbomachinery

blades [43]. It has recently also been used in flow visualization by capturing the relative

importance of different flow regions with respect to a quantity of interest [44].

A typical adjoint-based optimization/analysis framework is represented in figure 1.11.

First, using a set of parameters, α, that describe a geometry, a computational mesh, X,

is created. This mesh, along with a set of boundary conditions and operating conditions,

is used in a flow solver to compute a converged solution, q, to the partial differential

equations governing the flow. The adjoint equations are then solved to obtain the adjoint

solution ψ, relative to a specific objective function I (or performance metric). With the

adjoint solution, the gradient of the selected metric of performance to the set of design

parameters is easily computed. The adjoint-based gradient is often computed relative to

the numerical mesh grid, X. In that case, an extra step needs to be taken to compute the

gradient relative to the design parameters, α by multiplying the adjoint-based gradients

with the sensitivity of the mesh-grid to the design parameters (bottom equation of the

gradient box in figure 1.11). This gradient can either be used by a numerical optimizer

to change the design parameters and, following the previous steps iteratively, arrive to

an optimal solution, or by the designer to gain insight of how the performance metric in

study is influenced by the design parameters.

1.4 Adjoint-based Sensitivity Analysis in Turbomachin-

ery

One of the earliest applications of the adjoint method to the optimization of turbomachinery

was done by Yang and Liu [45], in 2003. Using the continuous approach, the adjoint-based

sensitivity information was used in the inverse design of two-dimensional cascade blades in

an inviscid flow environment. In 2004 Chung, Lee, and Martin [46] presented the discrete
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Figure 1.11: Representation of a typical adjoint-based sensitivity analysis framework.

adjoint formulation for a three-dimensional Euler solver and applied the adjoint solver to

the inverse design of NASA’s Rotor 37 blade geometry. In 2005, Wu, Liu, and Tsai [47]

used the continuous adjoint-based sensitivities on the constrained optimization of the VKI

turbine stator, and on the Standard Configuration 4 turbine. In the same year, Arens,

et al. [48] presented results on the optimization of turbine blades using the continuous

approach on the 2D Euler equations. The continuous adjoint method was also used in

the optimization of 2D shape of a turbine blade, combined with the quasi-Newton [49]

and in compressor and turbine blade design for two- and three-dimensional flows, both

inviscid and viscous, by Papadimitriou and Giannakoglou [50, 51]. The same authors later

successfully minimized total pressure loss in both compressor and turbine cascades, while

maintaining flow turning and blade thickness, using the continuous adjoint approach [52].

Luo, et al. [53] managed to apply the continuous viscous adjoint equations to the reduction

of secondary loss of low-aspect-ratio turbine blades by using the gradient information to

modify stagger angle, blade shape and endwall profile.

Marta, Shankaran, and Stein [54] firstly implemented the discrete adjoint solver for a

legacy turbomachinery CFD solver using the ADjoint approach. The same authors tested

an adjoint-based design framework on shape optimization of turbomachine blades using a

set of Hicks-Henne bump functions superimposed on the baseline shape as design variables.

The adjoint solution was also shown to provide insights into the nature of changes the

designer could induce to cause improvement in the performance metric of interest [55].

The same adjoint solver was later used to compute sensitivity of aerothermal performance
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parameters to blade geometry and inlet/exit boundary conditions of a single row of a

compressor [56].

Mueller and Verstraete [57] used automatic differentiation to develop an adjoint-based

framework that uses a tailored shape parameterization to satisfy geometric constraints

due to mechanical and manufacturing requirements while maintaining the shape in a

Computer Aided Design (CAD) representation.

While the previous mentioned works dealt with the optimization/sensitivity analysis

of single rows of turbomachinery components. Turbomachines are typically composed of

many rows, with each pair of stator/rotor rows defining a single stage. On a multi-stage

turbomachine, as the flow is subsonic, there is a strong interaction between the various

rows, both in upstream and downstream directions. The individual optimization of a single

row would then most likely lead to a design that is less than optimal when combined with

the rest of its rows.

Multistage turbomachinery numerical analysis had been performed for many years,

with the steady mixing-plane [58, 59] approach often being the selected method for the

coupling of the various rows.

Frey, Kersken, and Nurnberger [60], Wang and Li [61, 62] and Walther and Nadarajah

[63, 64] presented adjoint solvers which allow multi-row optimization. Frey, Kersken, and

Nurnberger used finite-differences to obtain the derivatives to set-up the discrete adjoint

system of equations. Their selected mixing-plane approach used was based on Gile’s ex-

act two-dimensional non-reflecting boundary conditions [65]. Following the continuous

approach, Wang, et al. [62] and Wang and He [66] developed a multi-row capable tur-

bomachinery adjoint solver using a conservative adjoint mixing-plane approach, coupling

averaged co-states based on one-dimensional characteristics. The solver was applied to

the numerical optimization of various cases. Following the discrete approach, Walther and

Nadarajah manually differentiated the discrete equations of a turbomachinery Reynolds

Averaged Navier-Stokes (RANS) solver, proposing a framework for fully-automated con-

strained aerodynamic shape optimization. The coupling of the multiple rows was considered

using the mixing-plane formulation. More recently, Backhaus, Engels-Putzka, and Frey

[67] developed a multi-row capable adjoint solver using an operator-overloading AD tool

to implement the adjoint solver.

16



1.5 Contributions to the State-of-the-art

This thesis describes the formulation, implementation and application of the adjoint of the

mixing-plane interface of a legacy turbomachinery CFD solver. It follows the previous work

of Marta and Shankaran [56] on the implementation of the discrete adjoint counterpart of

a proprietary turbomachinery CFD solver, by using a source transformation AD tool on

the direct routines. The improved adjoint solver is used to obtain sensitivity analysis of

various functions of interest, such as pressure ratio, efficiency, mass flow and maximum or

averaged total temperatures, to both the hub and blade shapes and to the inlet and exit

boundary conditions of a stator-rotor turbomachinery stage.

With the adjoint mixing-plane interface, the adjoint solver will be able to obtain

sensitivity analysis of multi-row turbomachiney cases of study, where the appropriate

coupling among the several blade rows is taken into account. In addition, the functions of

interest will be extended to represent not only single blade row metrics but also full stage

metrics (with multiple rows).

Summarizing, the work presented in this document introduced the following contribu-

tions to the state-of-the-art:

• A formulation for handling coupled adjoint systems of equations in multi-row turbo-

machinery simulations;

• A detailed description of how to handle the differentiation of complex industrial

codes, with features that are difficult (or impossible) to differentiate in the process

of automatic differentiation;

• An improved adjoint solver, capable of handling multiple blade rows in the sensitivity

analysis of arbitrary functions of interest with regard to boundary conditions or mesh

geometry.

The implemented adjoint-mixing plane will provide the users with a large set of sensitivity

information of multi-row turbomachinery problems, which will allow the study of new

geometries and/or operating conditions that will hopefully translate into more efficient

and better performing turbomachines.
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1.6 Thesis Outline

This document began with an introduction to the motivation behind the work here pre-

sented, followed by an introduction to the subject of numerical optimization, particularly

in turbomachinery. A brief description of the adjoint method was also presented together

with a review of the various contributions to the subject in the past.

The description of the theoretical background for CFD analysis of multi-row turboma-

chine components is contained in Chapter 2.

Chapter 3 presents a detailed description of the various sensitivity analysis techniques,

with their advantages and disadvantages, and practical examples of application. The rea-

soning for choosing an hybrid technique on the development of the work described in this

document is also highlighted.

Chapter 4 presents the derivation of the continuous and discrete adjoint equations

for the 2D Euler equations, with the purpose to illustrate the adjoint formulation of flow

governing partial differential equations, that constitute the core of the adjoint solver used

in the simulations presented in this work.

The core of the present document is included in Chapter 5 in which the adjoint

formulation of the mixing-plane algorithm is presented. It contains a detailed description

of all the process, from the conceptual formulation to the numerical implementation, with

emphasis on the required modifications to the original code of the legacy CFD solver on

which the adjoint mixing-plane interface was implemented to allow for AD of the rewritten

code.

Following the numerical implementation, Chapter 6 presents the numerical verification

of the implementation by comparing the adjoint-based sensitivities of various performance

metrics to an assortment of independent parameters with FD approximations.

In Chapter 7, the adjoint-based sensitivity analysis results of a multi-row stator/rotor

low pressure turbine stage is presented. The chapter is divided into two parts, sensitivity

to boundary conditions, sensitivity to computational mesh.

The document ends with final conclusions and description of possible future work that

could be done to further improve the delivered capabilities in Chapter 8.
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Chapter 2

Numerical Analysis of

Turbomachinery

The numerical analysis of turbomachinery can range from simple one-dimensional analy-

sis of the thermodynamic cycle to complex three-dimensional modeling of the flow, heat

transfer and chemical reactions that occur through the various components of a turbo-

machine. In this chapter, the basic thermodynamic relations are reviewed first and then

the simplified Euler equations in two dimensions are introduced followed by the Reynolds

Averaged Navier-Stokes equations.

2.1 Thermodynamic Relations

The thermodynamic processes that the flow experiences as it goes through a gas turbine

can be represented by the Joule-Brayton cycle, assuming a continuous flow and that the

heat input takes place at constant pressure. This cycle, which was introduced in the

previous chapter and is schematically represented in figure 1.4, assumes flow behaves like

a calorically perfect gas with constant specific heat coefficient at constant pressure cp
and constant volume cv and constant specific heat ratio γ = cp/cv. This is a reasonable

assumption for aerodynamic problems, and, as such, it is maintained throughout this thesis.

For an ideal gas, the relation between pressure p, density ρ and temperature T , is given

by the specific gas constant, R, as

p = ρRT . (2.1)
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Specific internal energy can be defined as a function of density, pressure and γ as

e = 1
γ − 1

p

ρ
. (2.2)

Since total specific energy E is the sum of specific internal energy and kinetic energy, it

yields

E = e+ 1
2 |u|

2 , (2.3)

where u is the absolute velocity vector and |u|2 = (u2
x + u2

y + u2
z).

Total enthalpy can be defined as

hT = h+ |u|
2

2 . (2.4)

Since for an ideal gas total enthalpy can be related to total temperature as hT = cpTT , it

yields

TT = T + |u|
2

2cp
, (2.5)

which can be expressed as a function of density, pressure and velocity as

TT = cp
p

ρR
+ 1

2
|u|2

cp
. (2.6)

The increase of pressure p and total pressure pT in the compressor, for an ideal (isen-

tropic) gas can be related to the increase of temperature T and total temperature TT
by

p2

p1
=
(
T2

T1

) γ
γ−1

; pT2

pT1
=
(
TT2

TT1

) γ
γ−1

. (2.7a, 2.7b)

Similarly, for an ideal isentropic expansion in the turbine, we have

p4

p3
=
(
T4

T3

) γ
γ−1

; pT4

pT3
=
(
TT4

TT3

) γ
γ−1

. (2.8a, 2.8b)

In reality, the compression and expansion processes taking place in a real gas turbine

deviate from the ideal cycle represented in figure 1.4. A turbomachine compressor or

turbine is often characterized by its total pressure ratio and efficiency, indicating its

deviation from the ideal cycle (doted lines in figure 2.1). The total pressure ratio is the
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Figure 2.1: Non-isentropic compression and expansion processes.

ratio between the total pressure pT before and after the compression/expansion, given by

πc = pT2

pT1
and πt = pT4

pT3
, (2.9a, 2.9b)

where the subscripts c and t indicate the compressor and the turbine, respectively. The

efficiency is the ratio of work for the ideal case versus the real process, which is given by

ηc = hT2s − hT1

hT2 − hT1
and ηt = hT3 − hT4

hT3 − hT4s
, (2.10a, 2.10b)

for the case of compressor and turbine, respectively. Inserting equations (2.7a, 2.7b)

and (2.8a, 2.8b) into the previous expressions yields

ηc =

(
pT2
pT1

) γ−1
γ − 1(

TT2
TT1

)
− 1

and ηt =

(
TT4
TT3

)
− 1(

pT4
pT3

) γ−1
γ − 1

. (2.11a, 2.11b)

2.2 Reynolds-Averaged Navier-Stokes Equations

The Navier-Stokes equations [68, 69], in conservative form, can be written as

∂q

∂t
+ ∂f i
∂xi
− ∂fvi

∂xi
= Q, (2.12)
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where q, f and fv are the vectors of state variables, inviscid, and viscous fluxes, respectively,

defined as

q =



ρ

ρu1

ρu2

ρu3

ρE



, f i =



ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

ρEui + pui



and fvi =



0

τijδj1

τijδj2

τijδj3

ujτij + qi



, (2.13)

and source term Q represents all the potential body forces where ρ is the flow density, ui
is the mean velocity in direction i, E is the total energy, τij are the viscous stresses and qi
is the heat flux and the source term Q represents all potential body forces. If the viscous

fluxes fv are dropped, we are left with the Euler equations.

Viscous stresses τij can be written, assuming a Newtonian fluid where shear stress

varies linearly with strain rate, as

τij = µ

[
∂ui
∂xj

+ ∂uj
∂xi

]
+ λ

[
∂uk
∂xk

]
δij , (2.14)

where µ is the dynamic viscosity coefficient and λ the bulk viscosity coefficient. Following

Stokes’ hypothesis, relating the two coefficients through λ = −2µ/3, leads to

τij = µ

[
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

]
. (2.15)

The computation of high Reynolds viscous turbulent flows can be cumbersome, as a very

fine resolution on the computational mesh is required to account for the turbulence effects.

The RANS equations [70], as the name implies, are obtained by applying the so-called

Reynolds averaging procedure to the Navier-Stokes equations. This averaging consists

in decomposing the flow variables into a mean value and an instantaneous fluctuating

part. This introduces an additional term to the equations, the so-called Reynolds-stress

tensor, which has to be computed somehow to achieve closure of the equations. The

Reynolds-stress tensor is typically approximated with models such as the one-equation

Spallart-Almaras [71] or the two-equation models k-ε, k-ω [72, 73] or SST [74]. These

models are based on the Boussinesq approximation, which assumes that the turbulent
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shear stress is linearly related to the mean rate of strain, meaning that the Reynolds-stress

tensor can be calculated as the sum of a proportionality factor µt, called the eddy viscosity,

and the mean strain rate. Following this hypothesis, the previously introduced viscosity

coefficientµ is replaced by the sum of a laminar and a turbulent component, as

µ = µl + µt . (2.16)

The turbulence model used in the present work solves for the turbulence kinematic

energy k and the specific rate of dissipation ω using the k-ω model. This model introduces

two new equations to the system:

∂

∂t
(ρk) + ∂

∂xj
(ρkuj) = τij

∂ui
∂xj
− βkρkω + ∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.17)

and

∂

∂t
(ρω) + ∂

∂xj
(ρωuj) = α

ω

k
τij
∂ui
∂xj
− βωρω2 + ∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
, (2.18)

where α, β, σk and σω are closure coefficients and the eddy viscosity µt is obtained from

µt = ρk

ω
. (2.19)

The reader is advised to check references [73, 75] for further details on this model.

2.2.1 Discretization of the RANS Equations

In their discretized form, the RANS equations can be written as

∂q

∂t
+Rijk = 0 (2.20)

where the residual term R encompasses all fluxes and source terms and the triad ijk

represents the three directions of the computational mesh. A multi-block structured cell

centered finite-volume scheme with second-order central differences is used to discretize

the equations [76]. This means that the variables are assumed to be known at the center of

each cell, and fluxes across the boundaries of each cell are evaluated as the average of the

values in the cells on either side of the face. The second-order central-difference scheme
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results in the following expression for both convective and viscous flux gradients,

∂f

∂x1
=
f i+ 1

2 ,j,k
− f i− 1

2 ,j,k

∆x1
, (2.21)

where f i± 1
2 ,j,k

represents the fluxes at the faces of the cell in direction 1 and ∆x1 the

distance between the central nodes at each face. The same occurs for the other directions.

The fluxes across boundaries of each cell are evaluated as the average of the values in the

cells on either side of the face. For face (i+ 1
2 , j, k) this results in

f i+ 1
2 ,j,k

= 1
2 (f i+1,j,k + f i,j,k) . (2.22)

The fluxes across faces (i− 1
2 , j, k), (i, j ± 1

2 , k) and (i, j, k ± 1
2) are calculated accordingly.

This discretization results in a three-point stencil for each flux gradient and a seven-point

stencil for the entire convective flux contribution to the residual of the cell.

Artificial dissipation is used to suppress the tendency for odd and even point decou-

pling, and to prevent the appearance of wiggles in the regions containing severe pressure

gradients in the neighborhood of shock waves or stagnation points [77]. It is introduced

as a dissipative flux operator fd, which comes from a blend of second and fourth-order

differences with coefficients which depend on the local pressure gradient. This is the so

called Jameson-Schmidt-Turel (JST) scalar dissipation scheme. The stencil of this artificial

dissipation scheme spans over two cells in each direction, therefore, requiring information

from a total of thirteen cells (see figure 2.2a).

Viscous fluxes at the cell boundaries are obtained from a second-order discretization

as well. This results in a stencil of 27 cells (see figure 2.2b). The discrete residual Rijk of

a single cell can now be written as

R(q)ijk = hi+ 1
2 ,j,k
− hi− 1

2 ,j,k
+ hi,j+ 1

2 ,k
− hi,j− 1

2 ,k
+ hi,j,k+ 1

2
− hi,j,k− 1

2
, (2.23)

where h is the sum of the various discretized fluxes (convective, viscous, and due to artificial
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Figure 2.2: Stencil of dependence of the residual of a single cell.

dissipation), hijk = f iijk − fvijk − fdijk , yielding

R(q)ijk =f ii+ 1
2 ,j,k
− f ii− 1

2 ,j,k
+ f ii,j+ 1

2 ,k
− f ii,j− 1

2 ,k
+ f ii,j,k+ 1

2
− f ii,j,k− 1

2

− fvi+ 1
2 ,j,k

+ fvi− 1
2 ,j,k
− fvi,j+ 1

2 ,k
+ fvi,j− 1

2 ,k
− fvi,j,k+ 1

2
+ fvi,j,k− 1

2

− fdi+ 1
2 ,j,k

+ fdi− 1
2 ,j,k
− fdi,j+ 1

2 ,k
+ fdi,j− 1

2 ,k
− fdi,j,k+ 1

2
+ fdi,j,k− 1

2
.

(2.24)

A multi-step Runge-Kutta explicit time marching scheme [77] with convergence accel-

eration via local time steps, residual averaging and V-/W-cycle multigrid [78, 79] is used

to obtain the converged flow solution.

2.2.2 Physical Boundary Conditions

In a cell-centered scheme, the boundary conditions are applied by giving appropriate

values to the "auxiliary" (or ghost) cells that surround the computational grid block (see

figure 2.3).

Figure 2.3: Sketch of cell-centered grid, with interior (full black) and auxiliary nodes (light
blue).
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Physical boundary conditions include the inlet, exit and wall boundary conditions,

which come from the modeling of physical phenomenon, such as the non-slip condition of

a wall, or the imposition of the flow that enters or exits the domain.

Wall

In a solid wall boundary, the process of updating the auxiliary cell values to impose the

zero flux condition and the no-slip condition (if required) can be described as follows.

The static pressure at the auxiliary cell is first computed from the pressure imposed

at the wall surface as

(ps)aux = pwall
s − (ps)int (2.25)

The density at the auxiliary cell is then obtained from the wall temperature as

ρaux = (ps)aux

TauxR
, (2.26)

where the auxiliary pressure is computed from the wall temperature Twall, obtained from

the wall integration or wall function solution for adiabatic or isothermal flows, and interior

cell temperature as

Taux = 2Twall − Tint . (2.27)

The internal temperature Tint is computed from the internal static pressure ps and density

ρ as

Tint = (ps)int

ρintR
. (2.28)

The momentum quantities at the auxiliary cell are obtained from extrapolation/reflection

from the interior cell as

(ρui)aux = (ρint + ρaux)(V wall
i )− (ρui)int , (2.29)

where V wall
i is also obtained from either wall integration or wall function solutions. The

momentum quantities are then corrected according to

(ρui)aux = (ρui)aux − ρun(nw)i , (2.30)
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where ρun is the momentum in the normal direction given by

ρun =
3∑
i=1

((ρui)t + (ρui)int)nwi − (ρaux + ρint)(un)w , (2.31)

with (un)w being the whirl velocity contribution to the normal velocity at the wall. The

energy equation quantities are computed as

(ρE)aux = 1
γ − 1(ps)aux + 1

2

3∑
i=1

(ρui)2
aux

ρaux
. (2.32)

Inlet

The vector of inlet boundary conditions U inlet is defined as

U inlet =
{
pinlet
T , hinlet

T , V inlet
t , C inlet

r , C inlet
z

}
(2.33)

where pT is the total pressure, hT is the total enthalpy, Vt is the tangential velocity, Cr
and Cz are the direction cosines. Each of the five terms is of the size corresponding to

the number of ghost (or auxiliary) cells that discretize the inlet and exit boundary faces.

When turbulence models are in use, two extra quantities are introduced to the boundary

conditions vector, kinlet and ωinlet.

The inlet boundary condition assumed in the present work imposes the various quan-

tities at the ghost cells, starting with total pressure, as

paux = min(pint, p
inlet
T ) . (2.34)

The density imposed at the auxiliary cell is computed from total pressure pinlet
T and total

enthalpy hinlet
T as

ρaux = ρT

(
paux

pinlet
T

)1/γ

; ρT = γ

γ − 1
pinlet
T

hinlet
T

. (2.35a, 2.35b)

The momentum equation variables are computed as

(ρux)aux = ρaux [Vr cos(θ)− Vt sin(θ)] , (2.36)
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(ρuy)aux = ρaux [Vr sin(θ) + Vt cos(θ)] (2.37)

and

(ρuz)aux = ρauxVz , (2.38)

where the velocities in radial, tangential and axial directions, Vr, Vt and Vz, respectively,

are computed as

Vr = VrzC
inlet
r ; Vt = V inlet

t ; Vz = VrzC
inlet
z , (2.39)

where

Vrz =
√
V 2 − V inlet

t
2 ; V 2 = 2(hinlet

T − hinlet) ; hinlet = γ

γ − 1
paux

ρaux
. (2.40 a-c)

The conserved total energy at the auxiliary cell is computed as

(ρE)aux = 1
γ − 1paux + 1

2ρauxV
2 , (2.41)

and, lastly, the turbulence quantities are computed from the imposed b.c. values as

(ρk)aux = ρauxk
inlet (ρω)aux = ρauxω

inlet . (2.42)

Exit

In turbomachinery subsonic flow, static pressure is usually prescribed at the outlet.

paux = U exit = pexit (2.43)

The density is obtained from the imposed pressure in the auxiliary cell as

ρaux = 1
γ − 1

paux

eaux
; eaux = Eaux −

1
2V

2
aux; Eaux = Eint = (ρE)int/ρint . (2.44 a-c)

The momentum flow variables in the auxiliary cells are obtained from extrapolation of

the states at the interior cells as

(ρui)aux = ρaux(ui)aux , (2.45)
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with

(ui)aux = (ui)int = (ρui)int/ρint . (2.46)

The conserved energy variable is computed as

(ρE)aux = ρaux

(
eaux + 1

2V
2

aux

)
; V 2

aux =
3∑
i=1

(ui)2
aux , (2.47a, 2.47b)

and the turbulence quantities are computed as

(ρk)aux = ρaux(ρk)int/ρint; (ρω)aux = ρaux(ρω)int/ρint . (2.48a, 2.48b)

2.2.3 Other Boundary Conditions

This subsection describes the non-physical boundary conditions that are relevant to this

work. These boundary conditions come from the simplification and the numerical dis-

cretization of the problem.

Periodic

Periodic boundary conditions are used to reduce the computational domain and, thus,

the solution cost, in problems with geometrical periodicity with the assumption of flow

periodicity as well. In the case of an axial turbomachine, this domain can be a single blade

row passage, making a pitchwise slice of the row.

Periodic boundary conditions are imposed by copying the interior cells at the periodic

boundary into the auxiliary cells of the corresponding periodic boundary. For steady

simulations there is no need for extra treatment of this boundary conditions besides the

coordinate transformation. For unsteady simulations, the time the flow takes to travel

trough the computational domain must be taken into account by means of a phase-lag

boundary condition.

Multi-block

Another type of non-physical boundary condition is the multi-block boundary condition.

As the computational domain is subdivided in various blocks, which act as independent

computational domains to a certain extent, there must exist an exchange of information

between them, to correctly compute the flow solution across the various blocks.
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Each block contains halo cells, that can be used to impose physical boundary conditions,

if that is the case, to impose periodic boundary conditions, or the multi-block boundary

conditions being described. These are imposed by exchanging information of the two

interior cell layers close to the boundary of one block to the two auxiliary cell layers of an

adjacent block, and vice versa.

For blocks with meshes consistent with each other, this is a straightforward process,

as represented by figure 2.4. This type of connectivity between blocks is usually referred

to as 1-2-1.

Block 1

Block 2

Figure 2.4: Schematic of multiblock 1-2-1 boundary condition update.

If the meshes of the blocks are not consistent, then, the so called generalized multi-block

boundary condition is used, on which the auxiliary cells of one block are still updated

from the interior cells of the adjacent blocks, but in this case, an interpolation must be

performed, to accommodate for the relative difference between the location of the cells of

each block.

Block 1

Block 2

Interpolation

Interpolation

Figure 2.5: Schematic of generalized multi-block boundary condition update.
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2.3 Multi-row Turbomachinery Analysis

Simulating multi-row turbomachinery components can be achieved in many ways of varying

complexity and fidelity levels. Figure 2.6 schematically presents a series of approaches to

the numerical integration of fluid zones with single and multiple rotating frames.

For single rotating frames, (SRF) the simulation is straightforward. An angular speed

is given and introduced into the equations by means of a frame transformation. The

simulation is limited to one rotating row and can only be performed in the absence of

stators or volutes.

To simulate multiple rotating frames (or rotating and non-rotating) together, different

approaches can be taken, of various complexities. For steady-state simulations they are

the Frozen Rotor and Mixing-plane, while for unsteady simulations we have the sliding

mesh. These three approaches are presented in the following subsections, with emphasis

on the mixing-plane approach, to frame its use in the present work.

Numerical simulation of turbomachinery

Fluid zones with multiple rotating frames (MRF)

Steady approach Unsteady

Frozen rotor Mixing plane Sliding mesh
Fluid zone with
periodic single

rotating frame (SRF)

(-) each fluid zone is
treated as a steady
state problem
(-) Flow field data is
spatially averaged at
the mixing-plane

(-) relative movement
between fluid zones
(-) improper for tran-
sient rotor-stator in-
teraction (mixed-out
approach)

(-) unsteady approach
(-) for transient rotor-
stator interactions

(-) Fluid Zones with
constant angular
speed
(-) One impeller chan-
nel need be modeled
(-) only in absence of
stators or volute

Figure 2.6: Various approaches to the numerical simulation of a turbomachinery (adapted
from [80]).
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2.3.1 Frozen Rotor

The simplest way to obtain a steady multi-row solution is the so called frozen rotor

method. It is widely available and utilized [81–83] and works by fixing the relative position

between the rotating and stationary parts. The rotating effects on the rotating sections are

obtained with a frame transformation. It is directly applied to a multiple passage domain

and it does not involve any truncation at the rotor-stator interface. As such, all spatial

non-uniformities (wake and pressure waves) are able to pass trough the interface accurately

in a fully conservative manner. This steady state approach produces no transient effects

so, rotating wakes, secondary flows, leading edge pressure increases, amongst others, will

always stay in the same positions.

The frozen rotor approach is typically used to produce flow-fields to be used as starting

point for unsteady sliding-mesh simulations [84].

2.3.2 Steady Mixing-plane

The mixing-plane method was first introduced by Denton [85] and has since become the

industry standard for multi-row simulations. It is used with steady state simulations and it

requires only a single blade per row, as illustrated in figure 2.7 for single stator/rotor stage.

Between each blade passage, the flow properties are circumferentially averaged in the

Y

Z

X

Figure 2.7: Two-row computational domain using a single blade per row.

so-called mixing-plane interface and exchanged between adjacent computational domains.

The example is made for the case of an axial turbomachine but it can be easily extended

to radial and mixed configurations.
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Row 1

Row 2

-

Controller

Controller

−ΔF

F
(1)

F
(2)

ΔF

Δq
(1)

Δq
(2)

Figure 2.8: Schematic sketch of the flux balance algorithm [86].

Holmes [86] describes a mixing plane algorithm that achieves several key goals, including

complete flux conservation at the interface, robustness, indifference to local flow direction

and non-reflectivity. It consists in using a control-theory based flux balance algorithm to

drive the differences between the fluxes in the two faces to zero, by updating the conserved

variables in the ghost cells with a value based on the flux differences. To assure maximum

non-reflectivity in the interface, the method uses the two dimensional approach of Giles

[59]. The algorithm is schematically represented in figure 2.8. To obtain the quantity

∆q(i)
local to be added to the auxiliary cell, and starting from the set of conserved variables,

the fluxes across the interface are first defined as

Fm = {ρun, ρunus, ρunuθ, ρu2
n + p, ρunhT}T , (2.49)

or

F u = {ρun, ρunus, ρunuθ, ρuns, ρunhT}T , (2.50)

where s is the entropy, the subscriptsm and u indicate "mixed-out" or "unmixed" fluxes and

us, uθ and un are the velocity in spanwise, pitchwise and normal directions, respectively.

As stated by Holmes [86], the first will have a higher average entropy than the average

entropy of the flow before pitchwise averaging, while the latter will have the same entropy

as the mass flux averaged entropy of the flow before pitchwise averaging. The difference

∆F is simply the difference across the interface,

∆F = F (1) − F (2) . (2.51)

This difference is treated as a small perturbation and is first translated into a perturbation
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of the primitive variables, ∆P from the multiplication of the fluxes difference with A−1,

as

∆P = A−1 ·∆F , (2.52)

with A being given by

Am =



un 0 0 ρ 0

unus ρun 0 ρus 0

unuθ 0 ρun ρuθ 0

v2
n 0 0 2ρun 1

unhT + ρun
∂h
∂ρ

∣∣∣
p
ρunus ρunuθ ρhT + ρu2

n ρun
∂h
∂p

∣∣∣
ρ


, (2.53)

or

Au =



un 0 0 ρ 0

unus ρun 0 ρus 0

unuθ 0 ρun ρuθ 0

uns+ ρun
∂s
∂ρ

∣∣∣
p

0 0 ρs ρun
∂s
∂p

∣∣∣
ρ

unhT + ρun
∂h
∂ρ

∣∣∣
p
ρunus ρunuθ ρhT + ρu2

n ρun
∂h
∂p

∣∣∣
ρ


, (2.54)

depending on either mixed-out or unmixed fluxes are being used, respectively. The trans-

formation of primitive perturbations into one-dimensional characteristics,

∆λ = {∆p− c2∆ρ, ρc∆us, ρc∆uθ,∆p+ ρc∆un,∆p− ρc∆un}T (2.55)

is given by

∆λ = B ·∆P , (2.56)
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with B being defined as

B =



−c2 0 0 0 1

0 ρc 0 0 0

0 0 ρc 0 0

0 ρc 0 ρc 1

0 ρc 0 −ρc −1


, (2.57)

where c is the local speed of sound. The characteristic perturbations are then segregated

into two parts, ∆λ(1) and ∆λ(2), depending on the sign of the normal velocity and on the

Mach number normal to the interface. If the local direction of the flow is in the downstream

direction (1 to 2), ∆λ(1) will consist only of the forth element of ∆λ (the upstream acoustic

characteristics). The part ∆λ(2) will have the remaining characteristics, with the forth

being zero. The selection of the characteristics is given by

∆λ(i) = D(i)∆ · λ , (2.58)

with D being a diagonal matrix with diagonal entries of {0, 0, 0, 1, 0} or {1, 1, 1, 0, 1}.

The transformation of the characteristic perturbations on each side of the interface into

conserved quantities is performed by first converting them into primitive perturbations, as

∆P (i) = B−1 ·∆λ(i) , (2.59)

and finally by converting the primitive perturbations to perturbations in the conserved

variables, as

∆q(i) = C ·∆P (i) , (2.60)
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with C being defined as

C =



1 0 0 0 0

us ρ 0 0 0

uθ 0 ρ 0 0

un 0 0 ρ 0

E + ρ ∂e
∂ρ

∣∣∣
p
ρus ρuθ ρun ρ ∂e

∂p

∣∣∣
ρ


. (2.61)

The whole process can then be written as

∆q(i) = C ·B−1 ·D(i) ·B ·A−1 ·∆F . (2.62)

The overall procedure (schematically represented in figure 2.9) can be condensed in

the following five steps:

1. Compute the fluxes profiles p from conserved quantities at the mixing-plane face

and create a local profile by averaging them at each spanwise position,

plocal,j = f(q̃j) ; (2.63)

2. Communicate the local radial profiles plocal of averaged quantities as donor profiles

pdon between blade rows,

plocal −→ pdon ; (2.64)

3. Interpolate the received prec profiles to match local cell distribution,

prec = f(pdon,plocal) ; (2.65)

4. Compute differences in fluxes and state variables p∗rec between the interpolated and

local profiles,

p∗rec = f(prec,plocal) ; (2.66)

5. Compute the variation in the conserved variables q∗ to be applied to the auxiliary
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cells, from the flux differences (as given by equation (2.62)) and update them,

q∗local = f(p∗rec, qlocal) . (2.67)

θ

Z

r

1. Create

radial profile

2./3. Exchange 

and interpolate

4./5. Update

boundary conditions

Pitchwise 

averaging

Figure 2.9: Schematic representation of the mixing-plane interface steps.

2.3.3 Unsteady Sliding-mesh

With increased complexity compared to the steady mixing-plane, the sliding-mesh method

is able to capture the unsteady interaction between consecutive rows of a turbomachine

[87–91].

The first description of sliding meshes was done by Rai [92, 93] and, much like the

previously described mixing-plane, the flow fields of multiple blade rows are computed

simultaneously. With the sliding-mesh approach, the simulations are run in fully unsteady

mode and rotating effects are included into the simulation by moving the meshes of

adjacent rows relative to each other at every time step. This leads to non-matching cells

at the interface between the two meshes (moving and non-moving), which introduces a

problem of interpolation. At the interface between two blade rows in relative motion, the

relative grid must lie on a common surface of revolution. In cell-centered discretization, the

interpolation transfers the information from the interior cells on one side of the interface

to the auxiliary cells on the other. The interpolation scheme should guarantee a complete

balance of fluxes across the interface, which can be assured by interpolating not only flow

variables across the interface but also fluxes [94].

Typically, to avoid instabilities due to resonance between different rings, the number

of stator vanes and rotor blades in a turbomachine does not have a common denominator.
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This is known as detuning [95]. A full unsteady sliding-mesh computation would therefore

need the simulation of the complete wheel, including all stator vanes and rotor blades.

This is often not possible due to increased computational requirements, so the number

of vanes and rotor blades is reduced by finding a denominator that is almost common,

and scaling the geometry circumferentially. This might introduce some cases that require

special treatment during the iterative process, due to the meshes on either side of the

interface not being aligned at a given time step. For the case of equal angular width meshes,

this can be done by simply replicating the mesh, since the problem is periodic. When

non-equal angular width meshes are used, a phase-lag storage scheme must be used [96].
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Chapter 3

Techniques of Sensitivity Analysis

As previously mentioned in the first chapter, a numerical optimization problem, when

solved using GB algorithms will require the gradients of the objective functions and

constraints relative to the design variables, in order to select the direction on which it will

advance to reach the (local) optimal solution. Given a set of functions (or vector-valued

function) f which depend on a set of independent variables α, we are then interested in

calculating the Jacobian df/dα, which can be expanded as

df
dα =



df1

dα1
· · · df1

dαNα
... . . . ...

dfNf
dα1

· · ·
dfNf
dαNα


, (3.1)

with size Nf ×Nα. This chapter presents various methods of computing the entries of this

matrix and discusses their advantages and disadvantages. At the end of the chapter, the

method selected to continue with the proposed work is presented and its choice supported.

3.1 Finite Differences

The finite differences method is the most widely used for calculating derivatives. Due to

its simplicity, it can be easily implemented, even when using black-box computational

models. The finite differences formulas are obtained from the combination of Taylor series

expansions [97, 98] and the resulting expressions can be of arbitrary order of accuracy.
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The second-order central difference of the first derivative of f is given as

df
dαj

= f(α+ hej)− f(α− hej)
2h +O

(
h2
)
, (3.2)

where h is the step size and O (h2) represents the truncation error, which is proportional

to the largest term of the remainder. For this case it reduces with the square of h.

Each evaluation of the derivative results in a column of the Jacobian in equation (3.1),

thus, the cost of computing the full Jacobian with this method is proportional to the

number of design variables Nα.

With finite differences, reducing h only reduces the truncation error down to a certain

value, from which the error does in fact increase, due to subtractive cancellation error [99].

This error appears for small values of the perturbation step, which lead to both perturb

terms of equation (3.2) being nearly identical (f(α+ hej) ' f(α− hej)), yielding a zero

valued derivative. Such behavior can be observed in figure 3.1, where the relative error of

two FD approximations of different order of the first derivative of a selected function is

presented. The different slopes of the two lines reveal the order of the two approximations,

with the red line (second-order) having a slope of -2 and the blue line (fourth-order) having

a slope of -4. Starting at h = 10−5, the error of the second order approximation starts

to increase. The fourth-order derivative reaches lower errors for larger h but the error

starts to rise sooner. Due to this increase in the dominance of the subtractive cancellation

error for small values of h, a thorough analysis of the optimal perturbation step must be

performed to remain out of that problematic region.

Figure 3.1: Relative error of finite-difference approximations of the first derivative of a
function with respect to the perturbation step.
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3.2 Complex Step

The complex step approximation uses complex variables to compute the derivatives of real

functions [28]. Like FD, the complex-step derivative approximation can also be derived

using a Taylor series expansion, using an imaginary step ih instead of the real step h.

Expanding f in a Taylor series around a real point α leads to

f(α+ ihej) = f(α) + ih
∂f

∂αj
− h2

2
∂2f

∂α2
j

− ih3

6
∂3f

∂α3
j

+ · · · . (3.3)

The first derivative of f is then obtained by taking the imaginary part of both sides of

the previous equation and dividing it by h, yielding

df
dαj

= Im [f(α+ ihej)]
h

+O
(
h2
)
, (3.4)

which approximates the derivative with order O(h2).

Unlike the finite-difference formula, there is no subtraction in the complex-step deriva-

tive approximation and the only source of numerical error is the truncation error. One can

then reduce h until the truncation error is of the same order as the numerical precision

of the evaluation of f . Each evaluation of the derivative results in a column of the Jaco-

bian in equation (3.1), thus, the cost of computing the full Jacobian with this method is

proportional to the number of design variables Nα. This method also requires access to

the source code of the computational model to modify all real variables and computations

with complex ones and therefore cannot be applied to black-box models.

3.3 Automatic Differentiation

Automatic differentiation – also known as algorithmic or computational differentiation –

applies the chain rule to computer programs to obtain derivatives of their outputs based

on their inputs [100].

Any computational algorithm consists in a sequence of operations that can be expressed

in the form

ti = fi (t1, t2, . . . , ti−1) , i = n+ 1, n+ 2, . . . ,m, (3.5)

where each function fi can be either a unary or binary operation, t1, t2, . . . , tn are the
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independent variables and tn+1, tn+2, . . . , tm are the dependent variables. By applying the

chain rule, the derivative of ti with respect to tj is given by

∂ti
∂tj

=
i−1∑
k=1

∂fi
∂tk

∂tk
∂tj

j = 1, 2, . . . , n. (3.6)

3.3.1 Forward and Reverse Modes

Automatic differentiation can operate in two different modes – forward (tangent or direct)

and reverse (backwards or adjoint). The forward mode propagates the required sensitivity

data along with the solution, as it is computed. The reverse mode requires the function to

be computed first-hand, with the intermediate values stored. These intermediate values

are then used by the reversed code to compute the sensitivities.

If we look at equation (3.6), the forward mode works by selecting one index j, keeping

it fixed and then working our way forward in the index i until we arrive to the desired

derivative. A function differentiated using the direct mode produces, with each run, a

column of the Jacobian matrix.

The reverse mode, on the other hand, works by fixing i and advancing backward in

the index j until reaching the independent variable. A function differentiated using the

reverse mode produces, with each run, a whole row of the Jacobian matrix.

Lets consider the subroutine

subroutine compute_bc( ↓q, ↓p, q∗
↓

),

written with Fortan syntax, representing the mixing-plane algorithm step that updates

the boundary conditions. The subroutine would take as inputs the state solution array to

be updated q, the profile with the information from the adjacent row p and would output

the updated state solution q∗. The subroutine obtained from AD using the forward mode

would appear as

subroutine compute_bc_d( ↓q, ↓qd,
↓
p,
↓
pd, q

∗

↓
, q∗d
↓

).

This new subroutine would now take as inputs, besides the original q and p, the so called

seeds pd and qd. The derivative of the full array q∗ with respect to a combination of
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selected inputs is given by this subroutine as

q∗d = ∂q∗

∂q
qd + ∂q∗

∂p
pd. (3.7)

Differentiating the original subroutine using the reverse mode would produce

subroutine compute_bc_b( ↓q, qb
↓
,
↓
p,pb
↓
,
↓
q∗,

↓
q∗b),

where qb and pb are the output derivatives and q∗b is the seed. The output derivatives are

computed in the differentiated subroutine as

qb =
(
∂q∗

∂q

)T
q∗b , pb =

(
∂q∗

∂p

)T
q∗b . (3.7 a,b)

3.3.2 Source Transformation and Operator Overloading

Automatic differentiation can be implemented by two methods: source code transformation

and operator overloading.

The first method involves the original code being processed by a parser which intro-

duces additional lines corresponding to all the derivative calculations while generating

the differentiated version of the source code. This method produces code that is practi-

cally unreadable, which might constitute an implementation disadvantage, as it becomes

impractical to debug the new version of the code. Despite that and being necessary to

rerun the parser every time the original code is changed, this method has the advantage of

yielding considerably faster code. The use of automated scripts can also help preparing the

code for being parsed, making the whole differentiation process much more streamlined.

This approach is sometimes an imposition of the language in which the original code is

developed. Some examples of AD tools that use the source transformation method to

differentiate Fortran code are ADIFOR [101], TAF [102], OpenAD/F [103], and Tapenade

[104].

The second method defines a new user-defined type, which is used instead of the real

type, including both value of the original variable and the derivative. This requires the

source code to be written in a language that supports derived data types, such as Fortran

90 or C++. This method also requires that all the intrinsic operations and functions are
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redefined for the new data type, so that these functions also compute the derivative as

well as the real value. Albeit usually resulting in a very elegant implementation, with little

changes to the original code, the differentiated version of the code generated using this

method is usually less efficient than that obtained with source code transformation. Tools

such as ADOL-C [105], Adept [106], CodiPack [107] use the operator overloading method

to differentiate code.

3.3.3 Example using Tapenade

An example of how Tapenade can be used to differentiate a Fortran routine is presented

below. Figure 3.2 presents the routine ubdate_bc that is to be differentiated. This routine

was written as an overly simplified version of how the boundary conditions are updated by

the mixing-plane algorithm. It can be seen from the source code that the subroutine receives

an averaged profile and from its values it updates the boundary conditions. Figures 3.3

and 3.4 present the source code of the routines differentiated in the forward and reverse

modes, respectively.

1 subroutine update_bc (n1 , n2 , bc_old , profile , bc_new )
2 implicit none
3
4 integer , intent (in ) :: n1 , n2
5 real(r8), intent (in ) :: bc_old (n1 ,n2)
6 real(r8), intent (in ) :: profile (n2)
7 real(r8), intent (out) :: bc_new (n1 ,n2)
8
9 integer :: i1 , i2

10
11 do i1 = 1, n1
12 do i2 = 1, n2
13 bc_new (i1 ,i2) = bc_old (i1 ,i2 )**2
14 & + 0.75* profile (i2)
15 end do
16 end do
17
18 end subroutine update_bc

Figure 3.2: Original Fortran subroutine to be differentiated.

Looking at the routine differentiated in forward mode, update_bc_d, we can see that

it takes two new data variables as inputs and a new variable as output, as described in

subsection 3.3.1. The two new input variables, bc_oldd and profiled, are used as seeds
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to compute the derivative of bc_old with respect to bc_old and profile, respectively, as

stated by equation (3.7).

1 SUBROUTINE UPDATE_BC_D (n1 , n2 ,
2 & bc_old , bc_oldd ,
3 & profile , profiled ,
4 & bc_new , bc_newd )
5 IMPLICIT NONE
6 C
7 INTEGER , INTENT (IN) :: n1 , n2
8 REAL *(r8), INTENT (IN) :: bc_old (n1 , n2)
9 REAL *(r8), INTENT (IN) :: bc_oldd (n1 , n2)

10 REAL *(r8), INTENT (IN) :: profile (n2)
11 REAL *(r8), INTENT (IN) :: profiled (n2)
12 REAL *(r8), INTENT (OUT) :: bc_new (n1 , n2)
13 REAL *(r8), INTENT (OUT) :: bc_newd (n1 , n2)
14 C
15 INTEGER i1 , i2
16 INTEGER ii2
17 INTEGER ii1
18 DO ii1 =1,n2
19 DO ii2 =1,n1
20 bc_newd (ii2 , ii1) = 0.0
21 ENDDO
22 ENDDO
23 DO i1=1,n1
24 DO i2=1,n2
25 bc_newd (i1 , i2) = bc_oldd (i1 , i2) +
26 & 0.75*2* profile (i2)* profiled (i2)
27 bc_new (i1 , i2) = bc_old (i1 , i2) + 0.75* profile (i2 )**2
28 ENDDO
29 ENDDO
30 END

Figure 3.3: Fortran subroutine automatically differentiated using the forward mode.

The routine differentiated in backward mode, update_bc_b, also has three new variables

in its arguments, one input bc_newb and two outputs bc_oldb and profileb. The new

input variable is the seed in this case, whose values, as seen from figure 3.4, are used as

weights for the output derivatives. This is extremely useful if one wants to create a chain

of various differentiated routines, which is then made by using the resulting derivative of

a previous routine as the seed of the next differentiated routine.
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1 SUBROUTINE UPDATE_BC_B (n1 , n2 , bc_old , bc_oldb , profile ,
2 & profileb , bc_new , bc_newb )
3 IMPLICIT NONE
4 C
5 INTEGER , INTENT (IN) :: n1 , n2
6 REAL *(r8), INTENT (IN) :: bc_old (n1 , n2)
7 REAL *(r8) bc_oldb (n1 , n2)
8 REAL *(r8), INTENT (IN) :: profile (n2)
9 REAL *(r8) profileb (n2)

10 REAL *(r8) bc_new (n1 , n2)
11 REAL *(r8) bc_newb (n1 , n2)
12 C
13 INTEGER i1 , i2
14 INTEGER ii1
15 INTEGER ii2
16 DO ii1 =1,n2
17 DO ii2 =1,n1
18 bc_oldb (ii2 , ii1) = 0.0
19 ENDDO
20 ENDDO
21 DO ii1 =1,n2
22 profileb (ii1) = 0.0
23 ENDDO
24 DO i1=n1 ,1,-1
25 DO i2=n2 ,1,-1
26 bc_oldb (i1 , i2) = bc_oldb (i1 , i2) + bc_newb (i1 , i2)
27 profileb (i2) = profileb (i2) +
28 & 0.75*2* profile (i2)* bc_newb (i1 ,i2)
29 bc_newb (i1 , i2) = 0.0
30 ENDDO
31 ENDDO
32 END

Figure 3.4: Fortran subroutine automatically differentiated using the reverse mode.

3.4 Semi-analytic Methods

Typically, the objective functions introduced in the beginning of this chapter do not depend

uniquely on a set of design variables, but also on the physical state of the system q, which

usually also depends on those design variables,

f = f (α, q(α)) . (3.8)
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Applying the chain rule of differentiation, the total sensitivity of f with respect to the

design variables is given as
df
dα = ∂f

∂α
+ ∂f

∂q

dq
dα , (3.9)

with the size of the sensitivity matrices being

∂f

∂α
(Nf ×Nα) , ∂f

∂q
(Nf ×Nq) ,

dq
dα (Nq ×Nα) , (3.10)

where Nf is the number of functions of interest, Nα the number of design variables and Nq

is the size of the state vector, which, for the solution of a large, three-dimensional problem

involving a system of conservation laws, can be very large. The size of the state vector

will depend on both de number of computational cells, Nc, and governing equations, Nv,

as Nq = Nv ×Nc.

Let us also consider the system of governing equations represented by the residual

R (α, q(α)) = 0, (3.11)

where the first instance of α indicates that the residual may depend explicitly on the

design variables. In the same way as for the function of interest f , the total derivative of

R is given by
dR
dα = ∂R

∂α
+ ∂R

∂q

dq
dα = 0, (3.12)

which, after rearranging, provides an expression for computing the total sensitivity of the

state variables with respect of the design variables dq/dα, given by

∂R
∂q

dq
dα = −∂R

∂α
, (3.13)

with the size of the sensitivity matrices being

∂R
∂q

(Nq ×Nq) ,
∂R
∂α

(Nq ×Nα) . (3.14)

Solving equation (3.13) for dq/dα and substituting the result into equation (3.9) yields

df
dα = ∂f

∂α
− ∂f

∂q

[
∂R
∂q

]−1
∂R
∂α

. (3.15)
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From this expression, there are two methods to evaluate the total derivative df/dα, the

direct and the adjoint. Each one presents advantages and disadvantages, depending on the

size of the problem (number os functions of interest, Nf , and number of design variables,

Nα).

3.4.1 Direct Method

In the direct method, the result of solving equation (3.13) for dq/dα is substituted in

equation (3.9), resulting in the direct sensitivity equations, given by

df
dα =∂f

∂α
+ ∂f

∂q

dq
dα ,

such that ∂R
∂q

dq
dα = −∂R

∂α
.

(3.16)

From equation (3.13), it can be seen that each design variable αi will require one solve of

the system of equations, making the computational cost of this approach proportional to

the number of design variables, Nα.

3.4.2 Adjoint Method

A different method can be taken for computing the total sensitivity df/dα by defining an

auxiliary vector ψ as

ψT = ∂f

∂q

[
∂R
∂q

]−1

(Nf ×Nq) , (3.17)

which can be rearranged into [
∂R
∂q

]T
ψ =

[
∂f

∂q

]T
. (3.18)

The auxiliary vector ψ is usually called the adjoint vector and, substituting it into equa-

tion (3.15) leads to the adjoint sensitivity equations - or the dual problem - given as

df
dα =∂f

∂α
−ψT ∂R

∂α
,

such that
[
∂R
∂q

]T
ψ =

[
∂f

∂q

]T
.

(3.19)
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Contrary to the direct method, the adjoint method does not require solving a system

of equations Nα times. Instead, it is solved Nf times, one for each function of interest

f . This highlights the impact the choice of the method (direct vs. adjoint) to computing

(3.15) has on the cost of the sensitivity analysis. For problems with a larger set of design

variables than of functions of interest (Nα >> NI) the adjoint method would be the most

efficient, while for problems where the number of functions of interest greatly surpasses

the number of design variables (NI >> Nα), the direct method is the obvious choice.

Discrete and continuous approaches

There are two ways of obtaining the adjoint equations of a system of PDE’s, which

differ by the order in which the discretization and linearisation are performed, as illustrated

in figure 1.10. Following the dotted line in the figure, the continuous adjoint approach

starts by linearising the non-linear PDE’s followed by the forming of the adjoint equations,

with the last step consisting in the discretization of these continuous adjoint equations.

Following the solid line, the discrete adjoint approach first discretizes the non-linear PDE’s

which are then linearised and transposed.

Both approaches produce a set of discrete adjoint equations that, in theory, should be

consistent and converge to the correct analytic value of the gradient of the function of

interest in the limit of infinite grid resolution and given that the solutions are sufficiently

smooth (e.g. no shocks) [108].

The choice of using the discrete or the continuous approach of the adjoint problem is

not straightforward as both present their advantages and disadvantages [108–110].

One of the advantages of the discrete approach formulation is that it can be applied

to any set of governing equations and, since the adjoint equations are derived from the

discretized form of the flow governing equations, produces gradients consistent with the

flow solver. This is an important feature in optimization, as inconsistencies may not

allow the numerical optimizer to converge to a local minimum, due to the numerical

gradient not being zero at that location. Regarding the functions of interest, the discrete

approach presents the advantage over the continuous approach of being able to treat

arbitrary functions. The latter can only treat specific forms of integral functions [37,

111]. Another advantage of the discrete formulation is the seamlessness with which the

boundary conditions are handled, since the adjoint solver is derived from the discretized
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flow residual equations that already implement them. In terms of implementation, the

discrete approach presents a very interesting feature, which is allowing the use of AD

tools in its derivation [33, 112, 113]. Using these tools to obtain the differentiated form of

the discretized governing equations necessary to assemble the adjoint system of equations

allows for a considerable reduction in development time.

The differentiation of the continuous governing equations is usually a more involved

process than differentiating the discrete equations and a number of shortcuts must be

included for complicated governing equations, such as the RANS equations with turbulence

models [110]. In this case, the viscous effects might not be modeled in their entirety, and

even it they are, the flow is usually assumed to be laminar and no turbulence model is

used [37], with the viscosity and heat transfer ratio assumed to be independent from the

flow, and kept constant when deriving the adjoint equations. The biggest advantage of

the continuous approach is the reduced memory requirements of the adjoint solver, which

are at the same level as the flow solver.

A summary of the advantages and disadvantages of both approaches is presented in

table 3.1.

Discrete Continuous

Advantages

• Applied to any set of equations
• Gradient consistent with flow solver
• Handles arbitrary functions of interest
• Seamless boundary condition treatment
• Can be derived using AD

• Reduced memory requirements
• Clearer physical significance of adjoint
variables and role of b.c.’s

Disadvantages

• Increased memory requirements • More involved derivation
• Only allows function of interest in inte-

gral form

Table 3.1: Comparison of discrete and continuous adjoint approaches.
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3.5 Summary of the Various Approaches

Having completed the description of various approaches for the analysis of sensitivity

of functions of interest, we now summarize their various features, advantages and dis-

advantages. Section 3.5 presents a qualitative prediction of computational cost, ease of

implementation, fidelity and memory usage of the various methods, assuming they are to

be used to compute the sensitivities that were mentioned in the first chapter of this docu-

ment – sensitivities in multi-row turbomachinery simulations – which must be computed

for a large number of design variables (Nα >> NI), using relatively low CPU time and for

general functions of interest. The first three methods presented in the table can be excluded

CPU time Ease of
implementation Fidelity Memory usage

FD High Very Easy Moderate Low
CS High Moderate High Low

AD (fwd) High Complex High Low
AD (bwd) Medium Complex High High

Direct High Complex High Low
Adjoint (cont.) Low Complex High Low
Adjoint (disc. ) Low Complex High Moderate

Table 3.2: Summary of various sensitivity analysis approaches.

due to their high CPU time requirements, as one of the goals of the sensitivities that we

want to obtain is to be used in numerical optimization environments. Using AD for the

whole solver (or mixing-plane interface) would prove to be impossible, as the complexity

of the direct solver would make it impossible (and the code generated by the AD would

probably be extremely inefficient). Using the semi-analytic direct approach would present

the same problem of the first three methods that were excluded – high computational time

requirements. We are then left with the adjoint approach, either continuous or discrete.

The various advantages of the discrete approach, highlighted in table 3.1 led to the choice

of the discrete adjoint method, particularly the option of deriving the discrete adjoint

equations using AD tools. As such, the selected sensitivity analysis method was an hybrid,

merging the discrete adjoint with automatic differentiation, which will be presented in the

following section.
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3.6 Hybrid ADjoint Approach

As mentioned in the previous section, the discrete adjoint approach allows the use of AD

tools in the derivation of the adjoint equations [33, 112]. The hybrid ADjoint approach con-

sists exactly in that. The total derivative is computed with the previously described adjoint

method, and the partial derivatives are computed by routines obtained from automatic

differentiation, as indicated in equation (3.20).

df
dα = ∂f

∂α
−ψT ∂R

∂α
, such that

[
∂R

∂q

]T
ψ =

[
∂f

∂q

]T
.

AD

(3.20)

This concept merges the advantages of the discrete adjoint approach with the reduced

development time that automatic differentiation typically allows. The development of the

solver using this approach consists in first defining the residual R and functions of interest

f in terms of computer subroutines, that take as input the flow state solution q and

design variables α and output either the residual of a computational cell or the function

of interest (or set of functions) and then applying an AD tool to those subroutines, thus

obtaining differentiated routines that compute the required terms for the adjoint system

of equations of equation (3.20). The hybrid ADjoint approach encompasses three major

advantages: being largely automatic, being exactly consistent and generic [114].

• Largely automatic: Given the source code of the solver to be adjoined, the AD tool

creates the code that produces the necessary terms of the discrete adjoint formulation;

• Exactly consistent: The process of automatic differentiation allows the exact treat-

ment of arbitrarily complex expressions, and as such, the sensitivities produced by

the differentiated code are perfectly consistent with those that would be obtained

with the exact numerical differentiation of the original solver;

• Generic: A new formulation of the governing equations can be easily adjoined using

this method or even a new set of governing equations.

52



Chapter 4

Derivation of the Adjoint of the Euler

Equations

In this chapter, the derivation of the adjoint of the 2D Euler equations is made using both

the continuous and discrete approaches. This serves the purpose of illustrating the adjoint

formulation of flow governing PDE’s, that constitute the core of the adjoint solver used in

the simulations presented in this work. To this, a simplified form of the governing equations

and the general procedure to derive the adjoint equations are first introduced, and then the

adjoint formulation is derived using the two possible approaches. The chapter concludes

with the proof that, in the limit, both the continuous and discrete adjoint approaches lead

to the same adjoint equation

4.1 Euler Equations and Adjoint Procedure

Recalling the Navier-Stokes equations from Chapter 2, the Euler equations can be obtained

by not taking the viscous fluxes into account, thus obtaining

∂q

∂t
+ ∂f i
∂xi

= 0 . (4.1)

The derivation of the adjoint equations is simplified by mapping the solution to a fixed

computational domain with coordinates ξ1 and ξ2, where

Kn,m =
[
∂xn
∂ξm

]
= T−1 , K−1

n,m =
[
∂ξn
∂xm

]
= T, (4.2 a,b)
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and

J = det(K) = V , S = JK−1 . (4.3 a,b)

The elements of S are the cofactors of K, which, in a finite volume discretization are just

the face areas of the computational cells projected in the xi directions.

The general procedure to obtain the adjoint of a system of PDE’s is described as [115]:

1. Derive the first variation of the flux gradient;

2. Multiply it by the Lagrange multiplier φ and integrate over the domain D;

3. Subtract the integral obtained from the second step from the variation of the interest

function;

4. Perform integration by parts to isolate the variation of the state vector terms, δq,

from the variation of the shape function, δf .

This procedure is the same for both the continuous and the discrete approaches.

4.2 Derivation of the Continuous Adjoint Equation

The Euler equations for steady state can be expressed as

∂Fk

∂ξk
= 0, (4.4)

whose weak form, using the arbitrarily differentiable test vector φ 6= 0, is

R =
∫
D
φT
∂Fk

∂ξk
dD = 0 , (4.5)

where D is the domain of integration. Since from differential calculus
∫
aδb =

∫
δ(ab) −∫

(δa)b [27], it yields

∫
D

∂

∂ξk

(
φTFk

)
dD −

∫
D

∂φT

∂ξk
Fk dD = 0. (4.6)

Using the divergence theorem [27] on the first term of the previous equation leads to

∫
D

∂φT

∂ξk
Fk dD −

∫
B
nkφ

TFk dB,= 0 (4.7)
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where nk is the outward normal at the boundary B (in the computational domain). The

weak form of equation (4.7), for δq is

δR =
∫
D

∂φT

∂ξk
δFk dD −

∫
B

(
nkφ

T δFk

)
dB = 0, (4.8)

where

δFk = Ckδq + δSklf l , (4.9)

which should hold for any differentiable test function φ. The Jacobian matrices Ak and

Ck are defined as

Ak = ∂fk
∂q

, Ck = SklAl . (4.10 a,b)

Lets assume that we wish to control the pressure at the surface of an airfoil, like the

one represented in figure 4.1 by varying its shape.

Figure 4.1: Schematic of an airfoil, domain of integration and respective boundaries.

By retaining a fixed computational domain, the variations in the shape will result in a

corresponding variation in the mapping derivatives defined by K. Introducing the interest

function

I = 1
2

∫
BW

(p− pd)2 ds, (4.11)

where pd is de desired pressure, ds represents the infinitesimal length on the airfoil surface

and BW represents the surface of the airfoil. This is a typical function of interest in the

case of inverse design, where the end goal is to achieve a specific pressure distribution over

the airfoil surface [49]. This is attained with the minimization of I. A variation in I due
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to a variation in the control function ds can be expressed as

δI =
∫
BW

(p− pd) δp ds+ 1
2

∫
BW

(p− pd)2 δ (ds) . (4.12)

The pressure p depends on q trough the governing equations, therefore the variation

δp is determined from the variation δq. Since δR = 0, we can sum equation (4.8) to

equation (4.12), choosing the test function to be the Lagrange multiplier Λ, yielding

δI =
∫
BW

(p− pd) δp ds+ 1
2

∫
BW

(p− pd)2 δ (ds)

−
∫
D

∂ΛT

∂ξk
δFk dD +

∫
B
nkΛT δFk dB

(4.13)

The previous equation can be expanded as

δI =
∫
BW

(p− pd) δp ds+ 1
2

∫
BW

(p− pd)2 δ (ds)

−
∫
D

∂ΛT

∂ξk
(Ckδq + δSklf l) dD +

∫
B
nkΛT δFk dB .

(4.14)

By selecting Λ to be such that

− ∂ΛT

∂ξk
Ck = 0 in D, (4.15)

equation (4.14) becomes

δI =
∫
BW

(p− pd) δp ds+ 1
2

∫
BW

(p− pd)2 δ (ds)

−
∫
D

∂ΛT

∂ξk
δSklf l dD +

∫
B
nkΛT δFk dB ,

(4.16)

which no longer depends explicitly on δq. Equation (4.15) is the continuous adjoint equation

and it can be driven to a converged steady-state solution by using pseudo time τ , as

∂Λ
∂τ
−CT

k

∂Λ
∂ξk

= 0 in D . (4.17)

The variation δI still has dependency on δq trough δp and δFk. To deal with this, the

surface interval (last term of equation (4.13)) can first be split into the integral over the
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wall (airfoil surface) and over the far field, as

∫
B
nkΛT δFk dB =

∫
BW

nkΛT δFk dBW︸ ︷︷ ︸
Wall

+
∫
BF
nkΛT δFk dBF︸ ︷︷ ︸

Far Field

. (4.18)

As represented in figure 4.1, ξ2 is tangent to the surface of the airfoil, which can be

represented by ξ2 = 0, leading to the flow tangency condition of u2 = 0 in BW and the

unit normal nW = [0 1]T . By expanding the surface integral over the wall, and applying

the described boundary conditions, we obtain

∫
BW

nkΛT δFk dBW =
∫
BW

ΛT δF2 dξ1

=
∫
BW

ΛT



0

S21δp

S22δp

0


dξ1 +

∫
BW

ΛT



0

δS21p

δS22p

0


dξ1.

(4.19)

By letting Λ satisfy the boundary condition

Λjnj = p− pd on BW , (4.20)

where

nj = S2j√
S2jS2j

, (4.21)

the first term of the RHS of equation (4.19) cancels out with the first term of equa-

tion (4.16).

The surface integral over the outer boundary (far-field) can be expanded as

∫
BF
nkΛT δFk dBF =

∫
BF
nkΛT (Ckδq + δSkl f l) dBF . (4.22)

At this outer boundary, incoming characteristics for Λ correspond to outgoing character-

istics for δq. Consequently, the boundary condition for Λ can be chosen such that

nkΛTCkδq = 0 on BF , (4.23)
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thus canceling out the term Ckδq in equation (4.22). If the coordinate transformation

is such that δS is negligible in the far-field, then the term δSklf l is also zero and equa-

tion (4.13) becomes

δI = 1
2

∫
BW

(p− pd)2 δ(ds)−
∫
D

∂ΛT

∂ξk
δSklf l dD −

∫
BW

(δS21Λ2 + δS22Λ3) p dξ1. (4.24)

The first term of the RHS of equation (4.24) is a function of the direct flow solution, p, and

the last term, of the adjoint solution Λ. The second term is a function of both solutions

(I and Λ).

Numerical Discretization

The adjoint equation given by equation (4.17) can be expanded for a two-dimensional

problem as
∂Λ
∂τ
−CT

1
∂Λ
∂ξ
−CT

2
∂Λ
∂η

= 0, (4.25)

with ξ = ξ1 and η = ξ2. Discretizing the convective adjoint flux using a second-order

central spatial discretization leads to

V
∂Λi,j

∂τ
= 1

2
[
CT

1 (Λi+1,j −Λi−1,j) +CT
2 (Λi,j+1 −Λi,j−1)

]
, (4.26)

where V is the cell area and (i, j) corresponds to the computational indexes in the (ξ, η)

directions, respectively. From equation (4.10 a,b), the Jacobian fluxes can be expanded as

CT
1i,j = S11i,jA

T
1i,j + S12i,jA

T
2i,j , (4.27a)

and

CT
2i,j = S21i,jA

T
2i,j + S22i,jA

T
2i,j , (4.27b)

where

S11i,j = 1
2

(
S11

i+ 1
2 ,j

+ S11
i− 1

2 ,j

)
, S12i,j = 1

2

(
S12

i+ 1
2 ,j

+ S12
i− 1

2 ,j

)
, (4.28 a,b)
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and

AT
1i,j =

[
∂f 1

∂q

]T
i,j

, AT
2i,j =

[
∂f 2

∂q

]T
i,j

. (4.29 a,b)

Reducing the number of subscripts and simplifying the notation by defining the Euler

Jacobian matrices as

ÂT
i,j = CT

1i,j , B̂T
i,j = CT

2i,j , AT
i,j = AT

1i,j , BT
i,j = AT

2i,j , (4.30 a-d)

yields the discretized continuous adjoint residual, written as

R(Λ)i,j = 1
2
[
ÂT

i,j(Λi+1,j −Λi−1,j) + B̂T
i,j(Λi,j+1 −Λi,j−1)

]
. (4.31)

4.3 Derivation of the Discrete Adjoint Equations

The discrete adjoint equations are obtained by applying control theory directly to the set

of discrete field equations, following the same step sequence as in the continuous approach.

The equations resulting in the discrete approach will depend on the scheme used to

discretize the flow equations and so will their complexity. For the derivation of the discrete

adjoint equations, the previously described cell-centered, second order spacial dicretization

is used and only the convective flux gradients are considered for simplicity.

We first start by defining the variation of the discrete residual as

δR(q)ij = δhi+ 1
2 ,j
− δhi− 1

2 ,j
+ δhi,j+ 1

2
− δhi,j− 1

2
(4.32)

with

δhi± 1
2 ,j

= δf1i± 1
2 ,j

and δhi,j± 1
2

= δf2i,j± 1
2
, (4.33 a,b)

where f1 and f2 are the convective flux gradients in the two directions and their variation

δf being the abbreviation of

δf = ∂f
∂q
δq . (4.34)

The next step consists in pre-multiplying the variation of the discrete residual R by the

Lagrange multiplier ψ and sum the product over the computation domain, thus producing

Nξ∑
i=1

Nη∑
j=1
ψT
ijδR(q)ij = 0 , (4.35)
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where Nξ and Nη are the number of computational cells along each direction.

The third step consists in adding equation (4.35) to the variation of the discrete

function of interest, δIc, yielding

δI = δIc +
Nξ∑
i=1

Nη∑
j=1
ψT
ijδR(q)ij , (4.36)

where Ic represents the discretized function of interest. The continuous adjoint partial

differential system of equations is formulated employing integration by parts. In the discrete

approach, the discrete counterpart to integration by parts, the summation by parts, is

used instead.

The final set of discrete adjoint equations is produced by expanding δR(q) for (i, j)

and the four adjacent cells, which is then multiplied by the Lagrange multiplier, ψi,j. The

last step consists in collecting any term that is multiplied by δqi,j.

As we are dealing with the Euler equations, the only contribution that must be consid-

ered is the contribution from the convective terms and artificial dissipation. The latter are

not considered for simplicity, but its handling can be found in [115, 116]. The variation of

the convective flux computed at the cell faces can be written as

δfi± 1
2 ,j

= 1
2 (δfi±1,j + δfi,j) (4.37a)

and

δfi,j± 1
2

= 1
2 (δfi,j±1 + δfi,j) . (4.37b)

These convective flux variations can also be expressed as the function of the fluxes defined

in the physical space, f , yielding

δfi± 1
2 ,j

= 1
2

[
δ
(
S1m

i± 1
2 ,j
fmi±1,j

)
+ δ

(
S1m

i± 1
2 ,j
fmi,j

)]
(4.38a)

and

δfi,j± 1
2

= 1
2

[
δ
(
S2m

i,j± 1
2
fmi,j±1

)
+ δ

(
S2m

i,j± 1
2
fmi,j

)]
. (4.38b)
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The previous equations can be expanded as

δfi± 1
2 ,j

=1
2

[
δS1m

i± 1
2 ,j
fmi±1,j + δS1m

i± 1
2 ,j
fmi,j

+S1m
i± 1

2 ,j
δfmi±1,j + S1m

i± 1
2 ,j
δfmi,j

] (4.39a)

and

δfi,j± 1
2

=1
2

[
δS2m

i,j± 1
2
fmi,j±1 + δS2m

i,j± 1
2
fmi,j

+S2m
i,j± 1

2
δfmi,j±1 + S2m

i,j± 1
2
δfmi,j

]
,

(4.39b)

which becomes

δfi± 1
2 ,j

=1
2

[
δS1m

i± 1
2 ,j
fmi±1,j + δS1m

i± 1
2 ,j
fmi,j

+S1m
i± 1

2 ,j

(
∂fm
∂q

δq

)
i±1,j

+ S1m
i± 1

2 ,j

(
∂fm
∂q

δq

)
i,j

 (4.40a)

and

δfi,j± 1
2

=1
2

[
δS2m

i,j± 1
2
fmi,j±1 + δS2m

i,j± 1
2
fmi,j

+S2m
i,j± 1

2

(
∂fm
∂q

δq

)
i,j±1

+ S2m
i,j± 1

2

(
∂fm
∂q

δq

)
i,j

 . (4.40b)

Substituting equation (4.40) into equation (4.32) yields, after discarding the terms

including the variation δS which does not contribute to the adjoint equations,

δR(q)i,j = 1
2

(S1m
i+ 1

2 ,j
− S1m

i− 1
2 ,j

+ S2m
i,j+ 1

2
− S2m

i,j− 1
2

)
∂fmi,j
∂q

δqi,j

+ S1m
i+ 1

2 ,j

∂fmi+1,j

∂q
δqi+1,j − S1m

i− 1
2 ,j

∂fmi−1,j

∂q
δqi−1,j

+ S2m
i,j+ 1

2

∂fmi,j+1

∂q
δqi,j+1 − S2m

i,j− 1
2

∂fmi,j−1

∂q
δqi,j−1

 .
(4.41)

From the previous equation, we can see that the linearized residual has contributions from

all four adjacent cells, (i±1, j) and (i, j±1). Therefore, the adjoint residual will only have

contributions from the same four cells. The sum over the entire domain of the product of

the residual by the transpose of the Lagrange multiplier vector, after collecting the terms
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with δqi,j and transposing equation [115], results in

R(ψ)i,j = − 1
2

[
S1m

i+ 1
2 ,j
AT
mi,j

(ψi+1,j −ψi,j)− S1m
i− 1

2 ,j
AT
mi,j

(ψi−1,j −ψi,j)

+ S2m
i,j+ 1

2
AT
mi,j

(ψi,j+1 −ψi,j)− S2m
i,j− 1

2
AT
mi,j

(ψi,j−1 −ψi,j)
]
.

(4.42)

Redefining ÂT and B̂T as

ÂT = S11
i+ 1

2 ,j
AT
ij + S12

i+ 1
2 ,j
BT
ij and B̂T = S21

i+ 1
2 ,j
AT
ij + S22

i+ 1
2 ,j
BT
ij , (4.43)

yields

Ri,j(ψ) = 1
2

[
ÂT

i− 1
2 ,j

(ψij −ψi−1,j) + ÂT
i+ 1

2 ,j
(ψi+1,j −ψij)

B̂T
i,j+ 1

2
(ψi,j+1 −ψi,j) + B̂T

i,j− 1
2
(ψi,j −ψi,j−1)

]
.

(4.44)

Equation (4.44) is identical to the discretized continuous adjoint equation (4.31) derived

in the previous section, which illustrates the similarity between the discretization of the

continuous and discrete convective fluxes. They do however differ in the manner in which

the metrics are calculated at each cell. While in the discretization of the continuous

equations, the metrics across the cell faces are averaged for each cell in each direction, it

is not so in the calculation of the discrete adjoint flux.

A further analysis can be done to compare the continuous with the discrete equations,

by assuming an infinitely discretized mesh. In this limit that the mesh cell size reduces to

zero, the adjoint convective flux can be written as

lim
∆ξ→0,∆η→0

R(ψ) = 1
2
[
ÂT

ij(ψi+1,j −ψi−1,j) + B̂T
ij(ψi,j+1 −ψi,j−1)

]
. (4.45)

The second-order central difference of the Lagrange multipliers can then be reduced to

lim
∆ξ→0

[
ψi+1,j −ψi−1,j

2

]
= ∂ψ

∂ξ
, (4.46)

which allows the adjoint convective flux term to be written in continuous form as

lim
∆ξ→0,∆η→0

R(q) = ÂT
∂ψ

∂ξ
+ B̂T

∂ψ

∂η
. (4.47)
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If the same notation as in equation (4.30 a-d) is used, the continuous form of the discrete

adjoint convective flux can be expressed as

R(ψ) = ÂT
∂ψ

∂ξ
+ B̂T

∂ψ

∂η
(4.48a)

= CT
1
∂ψ

∂ξ
+CT

2
∂ψ

∂η
(4.48b)

= CT
k

∂ψ

∂ξk
, (4.48c)

which is identical to the continuous adjoint equation.
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Chapter 5

Adjoint Multi-row Turbomachinery

Interface

Chapter 2 described various approaches to handle the interaction between adjacent rows

in a turbomachinery CFD simulation. As previously mentioned, the goal of the work

presented in this document was to extend the capability of a legacy adjoint solver to com-

pute sensitivity information for multi-row problems, which are typical in turbomachinery

designs.

The direct flow solver TACOMA [94, 96], on which the existing adjoint solver was

implemented [113], uses the mixing-plane approach described in chapter 2 to couple mul-

tiple rows in steady state simulations. As such, the adjoint multi-row interface that was

implemented and which formulation and implementation is presented in this chapter is

based on the same mixing-plane algorithm.

5.1 Adjoint Multi-row Formulation

If we do not take into account the interaction between rows, for the ith of Nr blade rows

(as represented in figure 5.1), we have Nr independent systems of adjoint equations, one

for each blade row, [
∂R

∂q

]T
i,i

ψi =
[
∂I
∂q

]T
i

, i = 1, . . . , Nr . (5.1)

However, since we are interested in taking into account the coupling among rows, that

are found to be of utmost importance in multi-row turbomachines, then the dependence

of the residual of cells of one row on cells of other rows must be considered, resulting in
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Figure 5.1: Schematic of a multistage turbomachine modeled with a sequence of Nr single
blade passage rows.

the coupled system of equations given as



[
∂R
∂q

]T
1,1

. . .
[
∂R
∂q

]T
1,Nr

... . . . ...[
∂R
∂q

]T
Nr,1

. . .
[
∂R
∂q

]T
Nr,Nr





ψ1

...

ψNr


=



[
∂I
∂q

]T
i

...[
∂I
∂q

]T
Nr


where the term [∂R/∂q]i,j represents the influence of row j in the residual of row i. As

each row only influences its neighbors (adjacent rows), we have that

[
∂R

∂q

]
i,j

= 0 , i− 1 > j > i+ 1. (5.2)

Therefore, if we want to find the adjoint solution in a global computational domain com-

posed as various row sub domains, we have to solve the single-row solutions with additional

coupling terms, given by the adjoint of the coupling procedure used in the direct solver.

Assuming a simplified case of only two adjacent blade rows, such as a single stage

comprised of stator-rotor, the coupled adjoint system reduces to


[
∂R
∂q

]T
1,1

[
∂R
∂q

]T
1,2[

∂R
∂q

]T
2,1

[
∂R
∂q

]T
2,2



ψ1

ψ2

 =


[
∂I
∂q

]T
1[

∂I
∂q2

]T
2

 . (5.3)

The mixing-plane algorithm works in both directions, with every row being simultaneously

a donor and a receiver. For simplicity of the following derivation, we shall consider only

one direction of influence and, as such we can define one row as the donor and other as
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the receiver,
∂R2

∂q1
≡ ∂Rrec

∂qdon
. (5.4)

The chain rule can be applied in the computation of the coupling non-zero off-diagonal

terms to distinguish the single-row term ∂Rrec/∂q
∗
local from a term that represents the

influence of the state solution of the adjacent domain, qdon on the updated state solution

q∗local, thus obtaining
∂Rrec

∂qdon
= ∂Rrec

∂q∗local

dq∗local
dqdon

. (5.5)

Recalling the mixing-plane algorithm described in subsection 2.3.2, the updated state

solution can be represented as a function of the various terms computed during the

multi-row exchange yielding

q∗local = f
(
p∗rec

(
pdon (qdon) ,plocal (qlocal)

)
, qlocal

)
. (5.6)

An expression for the multi-row coupling term can be obtained by differentiating each of

the terms identified above and applying the chain rule, thus obtaining

dq∗local
dqdon

= ∂q∗local
∂p∗rec

∂p∗rec
∂pdon

∂pdon

∂qdon
. (5.7)

The previous expression regards only the dependence on the cells across the multi-row

interface. However, there is also a new dependency on the cells of the local face due to the

multi-row boundary condition, yielding

∂Rrec

∂qlocal
= ∂Rrec

∂q∗local

dq∗local
dqlocal

, (5.8)

where the term dq∗local/dqlocal being given by

dq∗local
dqlocal

= ∂q∗local
∂p∗rec

∂p∗rec
∂plocal

∂plocal

∂qlocal
+ ∂q∗local
∂qlocal

. (5.9)

The first term of the RHS of equation (5.9) increases the stencil of the residual calculation

to cover at least a whole row of cells in the radial position of each cell of the single

stage stencil that belongs to the multi-row interface. The second term comes from the

non-reflectivity boundary conditions and also increases the stencil of influence to cover a

certain number of radial rows of the mixing-plane face.
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To obtain the total derivative given by equation (3.19) it is also necessary to compute

the term ∂R/∂α with the coupling taken into account. Similarly to ∂R/∂q, for multi-row

simulations, the adjoint system of equations becomes a coupled system of equations given

as

[
∂R

∂α

]
multi-row

=



[
∂R1
∂α1

]
. . .

[
∂R1
∂αNr

]
... . . . ...[

∂RNr
∂α1

]
. . .

[
∂RNr
∂αNr

]


, (5.10)

where the diagonal submatrices ∂Ri/∂αi represent the individual single-row systems of

equations and the off-diagonal submatrices introduce the coupling between rows.

The present work assumes inlet and outlet boundary conditions U and computational

grid coordinates X as possible design variables α, representing operating conditions and

blade/hub shape, respectively.

For the case of boundary conditions U , since the inlet and outlet surfaces are either

the first inlet or last outlet of the coupled domains, there the off-diagonal terms of ∂R/∂U

are zero, as there is no imposition of traditional boundary conditions in the mixing-plane

interface.

There is, however, a dependence of the updated state on the grid coordinates X of the

adjacent domain. Therefore, it is necessary to take the multi-row coupling into account

in its computation, if the grid coordinates are chosen as the design variables. In this case,

the coupling terms in ∂R/∂X are given by

∂Rrec

∂Xdon
= ∂Rrec

∂q∗local

dq∗local
dXdon

(5.11)

and
∂Rrec

∂X local
= ∂Rrec

∂q∗local

dq∗local
dX local

, (5.12)

where the terms dq∗local/dXdon and dq∗local/dX local reflect the dependency of the local state

solution on the computational grid coordinates of the donor and local cells, respectively.

Similarly to equations (5.7) and (5.9), this coupling terms can be obtained using the chain

rule for derivatives as
dq∗local
dXdon

= ∂q∗local
∂p∗rec

∂p∗rec
∂pdon

∂pdon

∂Xdon
, (5.13)
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and
dq∗local
dX local

= ∂q∗local
∂p∗rec

∂p∗rec
∂plocal

∂plocal

∂X local
+ ∂q∗local
∂X local

. (5.14)

5.2 Implementation of the Adjoint Steady Mixing Plane

Interface

Having defined the necessary terms to compute the off-diagonal terms of the multi-row

adjoint system of section 5.1, the ideal procedure with Automatic Differentiation (AD)

would be to give the direct solver code responsible for the mixing-plane interface and obtain

differentiated code that would produce those terms. It is however not that straightforward.

The complexity of the code, MPI communications and use of dynamic memory allocation,

amongst others, require a special treatment of the code before the AD tools can be used.

As such, the implementation of the previously described adjoint steady mixing-plane

interface consisted in four steps:

1. Rewrite the original routines into routines that can easily be differentiated using

AD tools;

2. Differentiate a set of routines to obtain the various terms of the right-hand side of

equations (5.7) and (5.13);

3. Assemble the routines in order to obtain the left-hand side term of equations (5.7),

(5.9), (5.13) and (5.14);

4. Implement the calculations of the previous step in the assembling of the global

matrix in equations (5.1) and (5.10).

A detailed description of each individual step is presented in the following subsections 5.2.1

to 5.2.4.

Step 4, albeit being the last step in the implementation of the adjoint mixing-plane,

was performed, in a way, before all the other steps, to assure that the modifications,

differentiation and hand-assembly of the differentiated routines would result in a routine

consistent with the existent adjoint solver and could be correctly introduced in the chain

of derivatives of the adjoint solver. In the original iterative procedure, the mixing-plane

exchange occurs after a certain number of time steps (here considered in every time step,
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for simplicity), as represented by algorithm 1. The implementation of the adjoint solver is

Algorithm 1: Original simplified iterative cycle.
1 initialization;
2 while not converged do
3 while simple cycle do
4 compute residual;
5 time step;
6 update boundary conditions;
7 end
8 mixing-plane exchange;
9 check convergence;

10 end

based on the fact that at convergence the updates of the solution are negligible, and, as

such, the iterative loop can be removed to represent the last iterative step, as represented

in algorithm 2. As such, one possible approach would be to implement the mixing-plane

Algorithm 2: Simplification of the last step of the convergence iteration.
1 initialization;
2 mixing-plane exchange;
3 update boundary conditions;
4 compute residual;

boundary condition update inside the rewritten residual computation routines and feed

the updated routine to the AD tool. Another approach would be to keep the adjoint

mixing-plane as a separate routine which would be integrated with the single-row routine

at the assembly of the left-hand side of the adjoint system of section 5.1. This approach

also presents a closer similarity to the original structure of the code, and, as such, it was

the selected approach.

5.2.1 Rewritting of Original routines

The first step comes from the way the original flow solver was implemented, which makes

use of modification to data structures contained in modules and, as such, are not explicitly

stated in the arguments of the various routines. These data structures were also imple-

mented making use of dynamic allocation of arrays in such a way that it was not possible

to use them directly with the AD tool Tapenade. The use of a custom MPI communica-

tion interface also lead to the decision of removing all the MPI communications from the
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routines to be differentiated and implementing them by hand in the adjoined version of

the main mixing-plane routine.

The main original mixing-plane routine, ms_exchange, is schematically represented

in figure 5.2. Inside this main routine, the routine ms_compute_profile does the com-

ms_compute_profile

ms_write_profile

ms_read_profile

compute_aux_deltas

ms_update_bc

ms_prq_local

mpi_pack

mpi_unpack ms_pr_don

q_local q_local*

ms_broadcast_profile

Access via module

MPI communication

Access via argument

Contains MPI

Routine argument

Module data

"OWNER ONLY"

Figure 5.2: Schematic of the original direct multi-row exchange algorithm ms_exchange.

putation of the mixing-plane profiles, ms_write_profile and ms_read_profile per-

forms the exchange of profiles between adjacent rows (and their interpolation upon re-

ceive), compute_aux_deltas computes the difference between the fluxes of the two (local

and received) profiles, ms_broadcast_profile broadcasts the profiles and differences to

all interested profiles, which then perform the boundary conditions update in routine

ms_update_bc. In order to maintain consistency with the original code, the rewriting

and hand-assembly of the differentiated routines were performed while trying to keep the

dataflow as close to the original as possible.

The remaining of this subsection will present the description of how the routines of

the original mixing-plane interface were rewritten and assembled into the rewritten main
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mixing-plane routine adj_ms_exchange, represented in figure 5.4. The description is di-

vided into four steps of the rewriting process, namely 1) memory allocation management,

where a description of how the custom data structures of the original code were han-

dled/rewritten to allow for differentiation; 2) profile computation; 3) profile exchange and

interpolation and 4) boundary conditions update. These last three steps describe how the

routines of each of those steps of the mixing-plane algorithm were dealt with, to allow for

the correct differentiation using the AD tool.

Memory Allocation Managment

Starting from the top of figure 5.2, the computational mesh and state solution data at

the mixing-plane interface is loaded from its original data structure into a set of arrays

containing the information required by the routines. This is like the approach taken in

the development of the adjoint solver but, in this case, the stencil is the inlet/exit face

located at the mixing-plane interface. Routine adj_ms_preprocess deals with all the

copying of the information into the "adjoint" structures. The data structure containing

the profile information was also modified, as illustrated in figure 5.3. The original profile

structures contained a series of allocatable arrays. Instead, the modified structure consists

of an array of structures with fixed values arrays. As an example, with this modification

ms_pr%val1(k) becomes prAdj(k)%val1. Special attention was also given to dynamic

original profile "adjoint" profile

1 2 n

1 2 n

1 2 n

...

array 1

array 2

array N

value 1

value 2

value N

...

1 n

value 1

value 2

value N

...(...)

Figure 5.3: Modification of profile data structure to apply automatic differentiation.

memory allocation inside the routines to be differentiated, as in some cases they led to an

incorrect differentiation.

Profile Computation

This routine, responsible for the computation of the profile, was split into three rou-

tines, adj_ms_comp_prof_1, adj_ms_accumulate and adj_ms_comp_prof_2. This split-
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ting came as a necessity to remove the MPI communication due to the accumulation

at the owner to finish the normalization of the profiles. The local spanwise averaging

is performed in adj_ms_comp_prof_1, the MPI gathering of the local averages into the

owner of the profile is performed by adj_ms_accumulate and the final normalization is per-

formed by adj_ms_comp_prof_2. Only adj_ms_comp_prof_1 and adj_ms_comp_prof_2

were differentiated using AD.

Profile Exchange and Interpolation

The routines responsible for the exchange of profiles between owners of adjacent profiles

ms_write_profile and ms_read_profile were rewritten to use the modified data struc-

tures instead of the original ones, resulting in the routines adj_ms_write_profile and

adj_ms_read_profile. One major change was the removal of the interpolation routine,

originally called inside the ms_read_profile into an independent routine, adj_ms_interp,

to allow its differentiation. The routine compute_aux_deltas dealt with the computation

of the difference between the fluxes of the local and adjacent row, as well as all the

mixing-plane computations described in subsection 2.3.2. This routine was also modified

to accommodate the rewritten data structures, as well as certain details to achieve the

correct differentiation using the AD tool. This rewritten routine adj_ms_aux_deltas was

merged with adj_ms_interp, as indicated in figure 5.4, as a way to simplify the hand

assembly of the differentiated routines.

Boundary Conditions Update

The last step of the mixing-plane algorithm is the update of the boundary conditions using

the local information and the profile obtained from both local and received profiles. The

routine responsible for this, ms_update_bc, also contains MPI communications. They occur

due to a second accumulation for the computation of the non-reflectivity Giles boundary

conditions. As stated before, all MPI operations were to be removed from routines that were

to be subjected to the automatic differentiation procedure. In this case, the solution found

was to accumulate the full information of the whole mixing-plane face and use it as input

for the routine. In terms of Fortran data structures, the routines responsible for the non-

reflectivity originally used user-defined type structures implemented in a similar way to the

previously described profiles data structures (with dynamically allocated arrays/vectors).

73



New structures were created following the same approach described above for the profiles,

to allow automatic differentiation.

adj_ms_comp_prof_1

adj_ms_comp_prof_2

adj_ms_write_profile

adj_ms_read_profile

adj_ms_update_bc

stAdjLocal

mpi_pack

mpi_unpack prAdj_don

qAdj_loc qAdj*

adj_ms_broadcast

prAdj_loc

adj_ms_accumulate stAdjGlobal

adj_ms_preprocessq_local qAdj_loc

prAdj_rec*

prAdj_rec*

"O
W

N
ER

" O
N

LY

adj_ms_aux_deltas

adj_ms_interp

Figure 5.4: Schematic of the rewritten direct multi-row exchange algorithm.

5.2.2 Automatic Differentiation of Rewritten Routines

Having dealt with all the modifications necessary for the AD tool to differentiate the

routines, the tool Tapenade was then used. The routines were differentiated in the reverse
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mode, resulting in routines that, given a seed xb and inputs x and y would produce

xb =
(
∂y

∂x

)T
yb . (5.15)

The selection of the reverse mode, despite the fact that the mixing-plane algorithm has a

number of inputs and outputs in the same order of magnitude (the number of cells in the

adjacent faces), was to later assemble the mixing-plane with the differentiated residual

routines as stated in equation (5.5).

5.2.3 Hand-assembly of Differentiated Routines

As described in the previous subsection, and in section 3.3 where the AD approach for

sensitivity analysis was presented, the routines generated by the AD tool will receive as

input a seed that will define the weights of the sum of the derivatives output by the

differentiated routine. With this, the multiplication of the various terms of the chain rule

of equations (5.7) and (5.9) is done by using the derivatives produced by the previous

routine as the seed to the next routine, as represented in figure 5.5.

adj_ms_update_bc_B

qAdj_loc

qAdjOutB

prAdj_rec*

qAdj_locB

prAdj_rec*B

prAdj_rec*

prAdj_don

prAdj_loc adj_ms_interp_B

adj_ms_aux_deltas_B prAdj_locB

prAdj_donB

Figure 5.5: Partial schematic of the manually assembled differentiated mixing-plane routine
adj_ms_exchange_B.

This step required special attention regarding the data flow of the derivatives. As seen

in figure 5.6, the local face of a process with interest in the mixing-plane data exchange

will send its averaged quantities to the owner of the profile, which in turn, after completing

the creation of the profile, will proceed to exchange profiles with the owner of the adjacent

face. After computing the deltas of the fluxes, the owner will broadcast these differences

profile to all interested processes. We therefore have a dependency of each process with
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Figure 5.6: Simplified dataflow representation of the rewritten direct mixing-plane algo-
rithm.

interest in the mixing-plane exchange on every process with interest in the mixing-plane

exchange in the neighbor domain. The approach taken for this is described in algorithm 3.

Once again, assuming just one direction of the exchange, where one row is the receiver

and other the donor, each process computes its own derivatives relative to steps 5, 4 and 3

and then sends the derivatives ∂q∗local/∂pdon back to the owner of the profile in the other

row (the donor row). The owner then computes the derivatives relative to the third part

of step 1 (normalization), broadcasts the derivatives to all interested processes in the same

row, which then compute the derivatives relative do the first part of step 1, ∂pdon/∂qdon.

This communication approach is not optimal, but it was found to be the only consistent

with the direct solver. It creates a bottleneck of information, as the owners of the profiles

must receive the derivatives from each process. In the direct solver, this is not a problem

since it is only performed once (one accumulation, one exchange and one broadcast) per

exchange. The dataflow of the derivatives is much more complex as each process depends

on all the other processes. This also imposes a synchronization between the processes

interested in the mixing-plane exchange. If two adjacent faces belonging to a mixing-plane

interface have levels of discretization, i.e. different number of cells, the processes of one

of the rows will have to run the differentiated exchange routine just so they can compute

their terms of the derivative to send to the other row.

5.2.4 Integration with Single-stage Routines

With the assembled differentiated routine producing ∂q∗local/∂qdon and ∂q∗local/∂qlocal, the

next step is to integrate the coupling term with the existent single-row differentiated
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Algorithm 3: Adjoint mixing-plane exchange algorithm.
1 call adj_ms_compute_profile_1;
2 call adj_ms_accumulate;
3 if (ms_owner) then
4 call adj_ms_compute_profile_2;
5 call adj_ms_write_profile;
6 call adj_ms_read_profile;
7 call adj_ms_interp_and_deltas;
8 call adj_ms_broadcast;
9 call adj_ms_update_bc_B;

10 call adj_ms_interp_and_deltas_B;
11 call adj_ms_write_profile_B;
12 for ip← to nproc_nbr do
13 if (ms_owner) then
14 call read_profile_B;
15 call adj_ms_compute_profile_2_B;
16 call adj_ms_accumulate_B;
17 call adj_ms_compute_profile_1_B;
18 save derivatives locally;
19 send derivatives back to interested processes;

residual routine to insert the terms into ∂R/∂q.

The partial derivatives ∂Ri/∂q computed with the single-row differentiated routine

adjoint_residual_B are first converted into the adjoint multi-row stencil, which is then

used as seed for the hand-assembled differentiated mixing-plane routine adj_ms_exchange_B.

This only happens in the case the stencil of influence of the residual of that cell contains

at least one cell in the mixing-plane interface (see figure 5.7). The derivatives (∂Ri/∂q)j

(a) No dependency on
mixing-plane.

(b) Dependency on mixing-
plane from one cell.

(c) Dependency on mixing-
plane from nine cell.

Figure 5.7: Stencil of influence of residual of a cell close to a mixing-plane boundary. (blue:
local residual stencil; red: local residual stencil on mixing-plane surface)

indicated in figure 5.8 as blue boxes (where each "box" corresponds to the derivatives

relative to each process on the adjacent row with interest in the mixing-plane interface)
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are then inserted into the global matrix ∂R/∂q in section 5.1.

stored
solution adjoint_stencil qAdj

adjoint_residual_B

convert_stencil

adj_ms_exchange_B

qAdjBss

qAdjBms

qAdjBi qAdjBN(...)

Figure 5.8: Schematic representation of the assemble of the differentiated mixing-plane
routine with the single-row differentiated routine.

5.3 Overview of the Implementation Effort

The implementation of the adjoint mixing-plane described in the previous section resulted

in a considerable increment to the source code of the adjoint solver.

A comparison of these metrics with the legacy and enhanced adjoint solver is depicted

in figure 5.9, where these two metrics are plotted. The implementation of the adjoint

mixing-plane increase the code size of the the adjoint solver with 420 new routines and

about 55,000 new lines of code, from which 120 are the rewritten and differentiated routines

and 300 vary between the routines directly involved in the hand assembly differentiated

routines, such as communication routines and data structures handling and routines used

for debugging of the code during its development.

78



Figure 5.9: Comparison of code metrics of the direct solver, adjoint solver before mixing-
plane and adjoint solver after implementation of mixing-plane.
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Chapter 6

Verification of the Implementation of

the Adjoint Mixing-plane Interface

The verification of the implementation of the adjoint mixing-plane interface is here pre-

sented following the same three steps of its development: rewriting, differentiation and

hand-assembling, integration.

In the first step, the profiles computed with the original and rewritten routines are

compared. Then , the verification of the differentiation and hand-assembling of the mixing-

plane exchange routines is here presented as a comparison of ∂q∗local/∂qdon computed both

with the differentiated routine and with finite-differences approximation. The last step,

the integration of the adjoint mixing-plane into the existing adjoint solver, is also verified

against finite-difference approximations.

6.1 Description of the Study Case

The verification is performed with the analysis of a stator/rotor stage of a low pressure

turbine of a commercial jet engine. The low pressure turbine stator/rotor stage is modeled

by two domains coupled with the mixing-plane interface. Each of the domains is discretized

with an O-H grid with a total of 90,750 cells amongst the two domains. The full stage

and computational mesh are represented in figure 6.1. The division of the computational

domains into various blocks is presented in figure 6.2. The first row has a total of 15 blocks

and the second is divided into 14 blocks.

The inlet boundary conditions prescribed are absolute tangential velocity and pressure
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Figure 6.1: Representation of stator-rotor stage in study and respective computational
mesh.

extrapolated from the interior. The exit static pressure is held fixed [56]. All solid walls

are considered impermeable with no-slip condition. Wall-functions [117] are used to model

near-wall viscous boundary layer. The remaining faces are either block-to-block interfaces

or periodic. Between the two domains, the boundary conditions are updated with the

mixing-plane algorithm with exchange of boundary fluxes. The inlet, outlet and mixing-

plane surfaces are represented in figure 6.3.

The flow solution was converged to a relative averaged residual of the continuity

Y

Z

X

Figure 6.2: Division of the computational domains into various individual blocks.

82



Figure 6.3: Schematic representation of the inlet and exit boundary surfaces of the stator-
rotor stage domain.)

equation of 10−6 or less, as shown in figure 6.4. For the adjoint solutions, the convergence

Figure 6.4: Residual iteration history of flow solution convergence of stator/rotor stage
simulation.

criterion was a relative difference in the magnitude of the residual between iterations of

10−9. The history of the residual during the GMRES iterations is presented in figure 6.5.

The restart of the GMRES was set at 75 iterations, which is noticeable in the residual

history from the sharp bend on the residual curve for all metrics, with a slight increase of

the residual.
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Figure 6.5: Residual iteration history of GMRES for adjoint solutions.

6.2 Overview of the Metrics of Performance

The performance metrics used as objective functions in the present verification are exit

mass flow (ṁout), rotor isentropic efficiency (ηrotor), stage isentropic efficiency (ηstage), stator

pressure loss (πstator), rotor total pressure ratio(πrotor), stage total pressure ratio (πstage)

and rotor blade area averaged total temperature (TTa)rotor. Mass flow considered is the

mass flow going out of the stage, computed at the exit of the rotor, and is given by the

sum of the fluxes across the exit of the stage as

ṁout = NB

exit∑
f i , (6.1)

where f i is the momentum flux across the exit of the stage and NB the number of blades

of the rotor row. Recalling the expressions for pressure ratio and efficiency introduced in

section 2.1, rotor isentropic efficiency is computed as

ηrotor = (T exit
Ta /T

mix
Ta )− 1

(pexit
Ta /p

mix
Ta )(γ−1)/γ − 1

, (6.2)

and stage isentropic efficiency as

ηstage =

(
T exit
Ta /T

inlet
Ta

)
− 1

(pexit
Ta /p

inlet
Ta )(γ−1)/γ − 1

, (6.3)
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Figure 6.6: Normalized density field of converged direct solution of stator/rotor turbine
stage.

where the subscript Ta indicates enthalpy averaged total quantities for the case of pressure,

and mass averaged total quantities for the case of temperature. The superscripts inlet and

exit indicate a quantity at the inlet and exit of the stage, and the supercript mix indicates

a quantity at the inlet/exit belonging to the mixing-plane interface, as represented by

figure 6.3.

The total pressure loss of the stator is given as

πstator = pinlet
Ta − pmix

Ta

pinlet
Ta

× 100 , (6.4)

while the pressure ratios of the rotor and of the whole stage are computed as

πrotor = pexit
Ta

pmix
Ta

; πstage = pexit
Ta

pinlet
Ta

. (6.4 a,b)
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The area averaged total temperature at the rotor blade is computed as

(TTa)rotor =
∑(Nc)rotor
i=1 ai(TT )i∑(Nc)rotor

i=1 ai
, (6.5)

where (Nc)rotor is the total number of cells in the rotor blade surface, ai is the computational

cell face area and (TT )i is the temperature at the wall of the individual cell i.

6.3 Overview of the Independent Variables

The adjoint-based sensitivity of the metrics of performance described in the previous

section can be computed to an arbitrary quantity and variety of independent variables (or

design variables) from equation (3.19), as long as the terms ∂I/∂α and ∂R/∂α can be

computed, either directly or by using the chain rule of derivatives. The following subsections

briefly describe the independent variables assumed for the remaining of this document.

6.3.1 Inlet and Exit Boundary Conditions

The first set of independent variables considered are the inlet and exit boundary conditions,

imposed at the inlet and exit of the complete domain in analysis. For multi-rows they

are the boundary conditions imposed at the inlet of the first row and at the exit of the

last row, that is, at the inlet of the stator and at the exit of the rotor, for the present

case in study (see figure 6.3). Recalling the boundary conditions defined in Chapter 2, the

complete vector of inlet/exit boundary conditions information is given by

U =
{
pinlet
T , hinlet

T , V inlet
t , C inlet

r , C inlet
z , pexit

}
. (6.6)

The adjoint-based sensitivity information of aerodynamic metrics of performance can

be used by the designer in a variety of ways, such as 1) directly used to manually tweak the

flow [56], 2) incorporated in an automatic gradient-based optimization design framework

[118], or 3) used for uncertainty quantification in robust design [119].

86



6.3.2 Blade Shape and Hub Geometry

The second set of independent variables considered are the blade shape and hub/casing

geometry, directly defined by the computational mesh grid X. While being the founda-

tion for obtaining higher-end sensitivities of geometry parameters, the sensitivity of the

performance metric to mesh grid dI/dX does not provide information that can be easily

analyzed as is. As such, in the present document, the sensitivities of the various metrics to

mesh grid are processed with some transformations of variables to allow a better analysis

of the the adjoint-based results.

The first transformation is the projection of the sensitivities onto the outer normal of

the surface of the blade, evaluated as

dI
dn = dI

dx
dx
dn + dI

dy
dy
dn + dI

dz
dz
dn = dI

dxnx + dI
dy ny + dI

dz nz , (6.7)

where the surface outer normal unit vector is given by n = (nx, ny, nz). This allows to

better visually assess this geometric sensitivity. The second transformation is performed

to assess the influence of hub and casing geometries on the performance metric and it is

defined as

dI
dr = dI

dx
dx
dr + dI

dy
dy
dr = dI

dx cos(θ) + dI
dy sin(θ) , (6.8)

where θ is the tangential angle in cylindrical coordinates measured from the x to the y

axis. This sensitivity information can be extremely important in hub and/or casing shape

optimization processes, often referred as endwall contouring, which can lead to significant

performance improvement of the turbomachine by significantly impacting the secondary

flows [53, 120–122].

A designer (or an optimizer) would not be interested in perturbing the mesh directly, but

in changing a set of design parameters β that would represent the geometry/deformation

by some method of parameterization, which would introduce some smoothing to the

perturbation and thus smoothing unwanted oscillations Examples of these engineering

significant parameters β are blade stagger or blade angle. The sensitivity information of the

performance metrics to the design parameters β would be obtained using the adjoint-based
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sensitivity information to the mesh as

dI
dβ = dI

dx
dx
dβ + dI

dy
dy
dβ + dI

dz
dz
dβ . (6.9)

Depending on the tool (or set of tools) used to generate the flow grid mesh (x,y, z) from

the geometry parameterization β, the sensitivities dx/dβ, dy/dβ and dz/dβ can be

obtained by either analytic methods (if source code is available) or by FD approximations

(if a blackbox is used).

6.4 Verification of the Rewritten Mixing-plane Interface

The first step of the verification was performed after the routines responsible for the mixing-

plane exchange were rewritten. Those followed the steps illustrated in figure 2.9. Before

introducing them into the AD tools, we needed to be certain that they were producing

boundary updates consistent with the original routines.

6.4.1 Profile Computation

The comparison of the profiles computed both with the original and the rewritten routines

is presented in figure 6.7, where the relative difference of radial profiles of the first five

averaged flux quantities F 1 to F 5 are plotted. It can be seen from the comparison that

the rewritten profile computation routines produce profiles that are nearly identical, with

maximum differences in the order of machine precision. A similar comparison is presented

in figure 6.8, for the turbulence fluxes F 6 and F 7. The relative differences for this case,

albeit larger than the ones in the previous figure, are still very small, with maximum

relative differences of 0.0005%, and thus allows the conclusion that the profile computed

with the rewritten routines is numerically identical to the original profile. The profile

structures of the code contain a larger set of variables than the variables here presented.

The verification of those variables is not presented here, although a full verification of

every variable was performed, obtaining similar agreement between the profiles produced

by the original and rewritten routines.
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(a) Row 1 (b) Row 2

Figure 6.7: Relative difference between averaged fluxes F 1 to F 5 computed with original
and rewritten routines.

(a) Row 1 (b) Row 2

Figure 6.8: Relative difference between averaged fluxes F 6 and F 6 computed with original
and rewritten routines.
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6.4.2 Boundary Conditions Update

Following the verification of the rewritten routines responsible for the computation of the

profiles, the results of the verification of the rewritten boundary update routines is now

presented in figure 6.9, where the relative difference between the boundary conditions

updated with the original and the rewritten routines are shown. Each column represents

the value of the maximum difference between the updated auxiliary cell value computed

with the original and rewritten routines. A maximum relative difference of about 0.1%

is obtained for q5 in row 1, with all the other relative differences being below 0.001%.

This larger difference, when compared to the other values is localized, as can be seen from

(a) Row 1 (b) Row 2

Figure 6.9: Maximum relative difference between updated auxiliary cells values computed
with original and rewritten routines.

figure 6.10, where the relative difference between the values of q5 produced by the original

and rewrite routines is presented at the exit face of row 1 and as will be observed from the

following sections, will not significantly impact the correctness of the adjoint mixing-plane

coupling terms and adjoint-based total derivatives.

6.5 Verification of the Adjoint Mixing-plane Interface

With assurance that the rewritten routines produce results with differences from the

original routines that are within machine precision, the next step is the verification of the

coupling terms ∂Rrec/∂qdon and ∂Rrec/∂qlocal, used in equations (5.5) and (5.8).
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Figure 6.10: Relative difference between updated auxiliary cells values computed with
original and rewritten routines in row 1.

6.5.1 Stencil of Dependency

The first step of this verification was to see if the stencil of influence of a selected cell

was correct. This can be observed in figure 6.11, where the derivatives ∂R1/∂q1 are

presented for an arbitrary cell in the exit face of the stator computational domain. The

dependency of the residual of cell (dark blue in the figure) on the whole row of cells in

the same radial position is clearly visible. This is the expected stencil of influence, as the

boundary conditions are updated from the difference of averaged fluxes, computed from

the whole row of cells at a specific radial position. A dependency on the two cells in each

azimuthal position is also visible, directly resultant from the local (single row) residual

stencil. One thing that should be mentioned is the lack of dependency on the corner cells,

as previously mentioned and represented in figure 5.7c, which is due to the dissipation

near the boundaries becoming of second-order.

6.5.2 Local Sensitivity

To verify the intra-row sensitivities ∂Rrec/∂qlocal, one cell located at the stator face be-

longing to the mixing-plane and the sensitivity of the residual to the interior local cells

was compared with second-order finite-difference approximations of the same sensitivity.

Figure 6.12 presents the comparison of the sensitivities of the the residual of the

continuity equation R1 of the cell highlighted in figure 6.11, on the face of the mixing-
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Figure 6.11: Sensitivity of Rrec of a single cell on the other interior cells in the same face
∂Rrec/∂qlocal (normalized values).

plane of the first row, on the interior cells of the same face, located in the same radial

position as the selected cell, computed with differentiated routines and second-order finite-

differences (with a relative perturbation step of 0.01%). The values of the derivatives

computed with both methods are very close and always with same sign, albeit the large

relative differences that can be seen in the figure. This is a typical problem when dealing

with relative differences, which, for small values close to zero, can translate into very large

values.

An equivalent comparison for a cell located at the inlet face of the second row is

presented in figure 6.13. In this case, the errors are very small, even for the smaller valued

derivatives, showing excellent agreement with the finite-difference approximations.

Similar verification was performed for the residuals of the other equations, achieving

good agreement with finite-difference approximation.

6.5.3 Inter-row Sensitivity

To verify the inter-row sensitivities ∂Rrec/∂qdon, a set of cells in each face was selected

and their sensitivity to the face of the other row compared to second-order finite-difference

approximations was analyzed. Figure 6.14 presents the maximum relative difference of

∂(Ri)rec/∂qdon for 6 control points (or cells). The first three (CP1−3) are located at the

exit of the stator, and the other three (CP4−6) located at the inlet of the rotor. Good

agreement is visible with both methods, with maximum relative differences of less than 4%.
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(a) q1 (b) q2

(c) q3 (d) q4

(e) q5

Figure 6.12: Comparison of mixing-plane local sensitivities of the residual of a cell at the
exit of the stator computed with differentiated routines and FD approximations.
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(a) q1 (b) q2

(c) q3 (d) q4

(e) q5

Figure 6.13: Comparison of mixing-plane local sensitivities of the residual of a cell at the
inlet of the rotor computed with differentiated routines and FD approximations.
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(a) ∂RCP1/∂qCP4-6 (b) ∂RCP4/∂qCP1-3

(c) ∂RCP2/∂qCP4-6 (d) ∂RCP5/∂qCP1-3

(e) ∂RCP3/∂qCP4-6 (f) ∂RCP6/∂qCP1-3

Figure 6.14: Maximum relative difference between inter-row sensitivities obtained with
differentiated routines and second-order finite-difference approximations.

6.6 Verification of the Adjoint-based Total Derivatives

Following the successful verification of the correct rewriting, differentiation and hand-

assembling of the mixing-plane routines, the next step is verifying the final objective of

the implementation of the adjoint mixing-plane interface: the total sensitivity analysis.
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In this section, the adjoint-based sensitivity of a selection of the six metrics of perfor-

mance introduced in section 6.2 to various independent variables introduced in section 6.3

are compared to first-order FD-based sensitivities, as

dI
dαi

= I(αi + h)− I(αi)
h

. (6.10)

Table 6.1 presents a summary of the various combinations of metrics/design variables

here presented. For these verifications, four nodes were randomly selected at the inlet and

dI
dα πstator πrotor πstage ηrotor ηstage ṁout (TTa)rotor

hinletT - X X - - - -
pinletT - - - - X X X

V inlet
t - - - X - - -
φinlet - - - - - - -
pexits X - X - - - -
rhub - X - - - - -
nblade - - - X - - -

Table 6.1: Selection of test cases included in verification of total derivatives.

exit boundary faces of the stator-rotor stage, as well as four at the hub of the stator and

four at the surface of the stator blade (two on the pressure and two on the suction side),

leading to a total of 16 control points. The flow solver was run to convergence for every

perturbation imposed on the design variable defined at each control node. The results here

presented would in theory, assuming the optimal perturbation step was known for each

case, lead to 24 extra flow solver runs (six selected design variables times 4 control points).

In practice, the number of runs was much higher. As the FD approximations are highly

sensitive to the perturbation step size, a manual search had to be performed to obtain

the optimal step for each control node to obtain a good trade-off between truncation error

due to large step sizes and subtractive cancellation due to too small perturbations. This

led to a minimum of five perturbed solver runs to obtain an adequate perturbation step,

and in many cases, much more were required. This highlights the advantage of the adjoint

method over finite-differences, for cases as the one in analysis, where the number of design

variables largely surpasses the number of functions of interest.

Still, in order to truly access this advantage, one needs to know the computational

requirements of the adjoint solver.
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A comparison of the computational requirements of the direct and adjoint solvers is

presented in table 6.2. While the CPU time requirements of computing both solutions is

approximately the same, the memory requirements of the adjoint solver increase tenfold

compared to the direct solver. This is a direct consequence of the solution method chosen

for the adjoint system of equations, that includes a full matrix storage and the iterative

GMRES method. This effect could be considerably mitigated if matrix-free algorithms

[123] or pseudo-time marching Runge-Kutta methods [57] were employed instead.

The table also presents a detailed description of the memory and CPU time required

by each of the processes of computing the adjoint solution, namely the 1) preprocessing,

2) assembling of the system of equations, 3) computing the solution with the GMRES

solver, 4) assembling the matrices/vectors to compute the total derivatives, 5) computing

the total derivatives and 6) Output of the solutions to files. As observed, the assembly

of the matrices and the solution of the adjoint system of equations take the bulk of the

required CPU time and memory, being roughly the same for each part.

CPU time Memory

Direct 1 1
Adjoint ∼ 1 ∼ 10

Preprocess (1) 0.3% -
Assemble ∂R

∂q
, ∂I
∂q

(2) 51.1% ∼ 50%
GMRES Solver (3) 42.2% ∼ 50%

Assemble ∂R
∂U

, ∂I
∂U

(4) 6.2% -
Compute Sensitivity (5) 0.1% -

I/O (6) 0.1% -

Table 6.2: Comparison of computational requirements of direct and adjoint solvers (nor-
malized by the direct solver).

6.6.1 Sensitivity of Stator Pressure Loss

The normalized adjoint-based sensitivity of stator pressure loss πstator to exit static pressure

pexits boundary condition of the rotor domain can be observed in figure 6.15, where the

contour plot is shown for the rotor exit surface. It is worth noting that the sensitivity is

always negative, implying that stator pressure ratio would decrease with an increase of the

static exit pressure, as expected. This effect is largest at the exit section midspan, away
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Figure 6.15: Adjoint-based sensitivity of stator pressure ratio πstator to exit static pressure
pexit
s boundary condition (normalized values).

from the hub and casing walls and aligned with the rotor wake. This probably means that

the effect is amplified when reducing the blockage effect of the blade.

The results of the verification of the adjoint-based sensitivity of the four control nodes

identified in figure 6.15 are presented in figure 6.16, where, for each control node, the

normalized adjoint- and FD-based sensitivities are plotted (black and white bars, respec-

tively), along with the relative difference between the two (gray bar). The sensitivities

Figure 6.16: Verification of adjoint-based sensitivities of stator pressure loss πstator to exit
static pressure pexit

s boundary condition using FD (normalized values).

computed by both methods differ by less than 0.5%, which attests the correct numerical

implementation of the adjoint mixing-plane interface.
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6.6.2 Sensitivity of Rotor Pressure Ratio

Figure 6.17 presents the normalized sensitivity of the pressure ratio of the rotor πrotor to the

radial position of the hub wall rhub. This sensitivity, when positive, indicates that moving

the grid node into the positive radial position (towards the casing, or the reader) will

produce an increase in πrotor. It can then be inferred from the figure that the rotor pressure

ratio can be increased by contouring the hub wall in different ways: making humps on

the positive derivative regions and/or making recessions at the negative derivative regions.

The multi-row coupling manifests itself in this example since there is a clear effect of stator

hub endwall contouring on the rotor pressure ratio. Some oscillations, visible near the inlet

and outlet of the stage, may result from the pointwise perturbation of the mesh and from

non-reflectivity only being enforced at the mixing plane and not at the inlet and exit of

the stage.

Figure 6.17: Adjoint-based sensitivity of rotor pressure ratio πrotor to hub wall radial
position rhub (normalized values).

Recalling the definition of the sensitivity to radial position given by equation (6.8),

which depends both on d/dx and d/dy, the results of the verification of the sensitivity of

πrotor to the hub wall x-coordinates are shown in figure 6.18, exhibiting again very good

agreement with the FD approximation, with relative differences below 0.9%.

Figure 6.19 presents the normalized adjoint-based sensitivity of rotor pressure ratio

πrotor to the total enthalpy hinlet
T imposed at the inlet of the stator. The first observation

that can be taken from the figure is that all values are positive, meaning that increasing

the total enthalpy at the entrance of the stage, leading to larger local temperatures, would

increase the pressure ratio of the rotor. From the figure, we can see that the regions of
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Figure 6.18: Verification of adjoint-based sensitivities of rotor pressure ratio πrotor to hub
wall grid x-coordinates using FD (normalized values).

higher sensitivity of πrotor with respect to hinlet
T are in the mid-span region and closer to

the hub (left side of the figure). The results of the verification of the sensitivity presented

Figure 6.19: Adjoint-based sensitivity of rotor pressure ratio πrotor inlet total enthalpy
hinlet
T boundary condition (normalized values).

in figure 6.19 are shown in figure 6.20, exhibiting very good agreement with the FD

approximation, with relative differences below 1%.

6.6.3 Sensitivity of Stage Pressure Ratio

The normalized adjoint-based sensitivity of total pressure ratio of the whole stage πstage

to exit static pressure pexits boundary condition is presented in figure 6.21. Contrary to

the sensitivity of the pressure losses of the stator, the entirety of the exit face presents

positive sensitivities, meaning that an increase in the static exit pressure would results

in an increase in the pressure ratio of the whole stage. This is with agreement with the

definition of the total pressure ratio and stator pressure losses. The higher sensitivities

are, as for the case of stator pressure loss, located mid-span, aligned with the wake of the

100



Figure 6.20: Verification of adjoint-based sensitivities of rotor pressure ratio πrotor to inlet
total enthalpy hinlet

T boundary condition using FD (normalized values).

Figure 6.21: Adjoint-based sensitivity of stage total pressure ratio πstage to exit static
pressure pexit

s boundary condition (normalized values).
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rotor.

Figure 6.22 presents the comparison of the adjoint-based sensitivities of the total

pressure ratio of the stage to rotor exit static pressure with finite-difference approximations.

As for the other cases, the FD approximations and adjoint-based sensitivities present good

agreement, with maximum relative differences slightly above 0.04%.

Figure 6.22: Verification of adjoint-based sensitivities of stage total pressure ratio πstage to
exit static pressure pexit

s boundary condition using FD approximations (normalized values).

6.6.4 Sensitivity of Rotor Efficiency

Figure 6.23 presents the adjoint based sensitivity of the rotor efficiency ηrotor to the shape

of the stator and rotor blades. In this case, the contour shown is the magnitude of the

sensitivity vector projected onto the blade surface outer normal at each point, as defined

by equation (6.7).

(a) Stator pressure side (b) Stator suction side

Figure 6.23: Adjoint-based sensitivity of rotor efficiency ηrotor to stator and rotor blade
shapes in normal direction (normalized values).
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Similarly to the hub contouring test case, this test case also demonstrates the coupling

between rows by quantitatively showing the impact of the stator blade shape on the rotor

efficiency. Analyzing figure 6.23, it can be seen that the rotor efficiency can be increased

by moving the stator blade in the positive (negative) outer normal direction at the regions

of positive (negative) derivatives.

The control nodes considered for the verification procedure are also identified in fig-

ure 6.23, two at the suction side and two at the pressure side of the blade. The derivatives

of rotor efficiency with respect to the y-coordinate of the selected control nodes of the stator

blade surface were compared to finite-differences and the results are shown in figure 6.24

(note that the values are normalized to the maximum value of the derivative at both row

domains). Good agreement is again obtained, with a maximum relative difference of 1.1%.

As with the hub control nodes, a good agreement with the FD approximation was also

obtained for the other two coordinates, x- and y-coordinates.

Figure 6.24: Verification of adjoint-based sensitivities of rotor efficiency to stator and rotor
blade surface grid y-coordinates using FD (normalized values).

Another example of coupling is shown in figure 6.25 which shows the effect of inlet

tangential velocity Vt on the stator efficiency ηstator, represented on the inlet plane. From

the contour plot of figure 6.25, the stator efficiency sensitivity to the inlet tangential

velocity varies considerably depending on both the radial and tangential location. This

variation is particularly strong (positive) closer to the hub and at midspan (negative).

Such rich information can be extremely useful with analyzing turbomachines at off-design

conditions, such as when inflow distortion occurs [124].

Figure 6.26 presents the comparison of the adjoint-based sensitivities to FD approxi-

mations. In this case, the optimum step for the FD approximation was harder to obtain,
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Figure 6.25: Adjoint-based sensitivity of rotor efficiency ηrotor to inlet tangential velocity
V inlet
t boundary condition (normalized values).

particularly in control node 2, where the minimum relative error we were able to obtain

was approximately 3.5%. This was probably due to the differences of order of magnitude

Figure 6.26: Verification of adjoint-based sensitivities of rotor efficiency ηrotor to inlet
tangential velocity V inlet

t boundary condition using FD (normalized values).

of the derivatives O(10−6), function of interest O(101) and quantity to perturb O(102).

The difference in magnitudes is not visible in the bar plots due to normalization. This

difficulty highlights the advantages of the adjoint method over the FD method, as the

adjoint-based sensitivities avoid the concept of perturbation step altogether.

6.6.5 Sensitivity of Stage Efficiency

We can also assess the efficiency of the whole stage ηstage, instead of only the rotor. Fig-

ure 6.27 presents the normalized adjoint-based sensitivity of the efficiency of the stage to

inlet total pressure pinlet
T . A positive high sensitivity region near the hub endwall is clear

from the figure, indicating that increasing the total pressure through increasing velocity

would lead to an increase of the overall efficiency of the stage, highlighting the importance
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of the previously mentioned endwall contouring.

Figure 6.27: Adjoint-based sensitivity of stage efficiency ηstage to inlet total pressure pinlet
T

boundary condition (normalized values).

Figure 6.28 presents the comparison of the adjoint-based sensitivities at the control

points highlighted in figure 6.27 with FD approximations. In this case, the relative differ-

ences are larger than in previous cases with a maximum relative difference slightly above

4%. This is due to not having found the optimal perturbation step and, albeit this slightly

larger relative differences, the absolute differences are still very small with both values

having the same signal.

Figure 6.28: Verification of adjoint-based sensitivities of stage efficiency ηstage to inlet total
pressure pinlet

T boundary conditions using FD (normalized values).

6.6.6 Sensitivity of Exit Mass Flow

The sensitivity of the mass flow at the exit of the rotor ṁout to the total pressure boundary

condition imposed at the inlet pinlet
T of the rotor is presented in figure 6.29. The values

are normalized by the maximum absolute value of the derivative. The positive derivative,

exhibited in almost all inlet section locations, reveals the expected increase of mass flow

with the increase of inlet total pressure.

105



Figure 6.29: Adjoint-based sensitivity of outlet mass flow ṁout to inlet total pressure pinlet
T

boundary condition (normalized values).

The adjoint-based derivative values also show good agreement with the FD approxi-

mation, as seen in figure 6.30, where the results of the verification presented for the four

control nodes exhibit differences smaller than 0.5%.

Figure 6.30: Verification of adjoint-based sensitivities of mass flow ṁout to inlet total
pressure pinlet

T boundary condition using FD (normalized values).

6.6.7 Sensitivity of Rotor Blade Averaged Total Temperature

The sensitivity of the area averaged total temperature at the surface of the rotor blade to

stage inlet total pressure pinlet]
T is presented in figure 6.31, where the four control points used

for verification with finite-differences are highlighted. Negative values across the majority

of the inlet indicate that increasing total pressure in those regions would lead to a increase

in the averaged total temperature of the rotor blade. At the hub and casing we observe

from the figure that the opposite occurs. As from previous results highlighted, these regions

are very prone to high sensitivities, with signal changes in close areas, indicating a possible

region of complex flows.
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Figure 6.31: Adjoint-based sensitivity of averaged total temperature of the rotor blade
(TTa)rotor to inlet total pressure pinlet

T boundary condition (normalized values).

Figure 6.32 presents the comparison of the normalized adjoint-based sensitivities with

finite-difference approximations. Very good agreement is visible from the figure, with a

maximum relative difference close to 1%.

Figure 6.32: averaged total temperature of the rotor blade (TTa)rotor to inlet total pressure
pinlet
T boundary condition using FD (normalized values).

6.7 Final Remarks

This chapter presented the numerical verification of the correctness of the implementa-

tion of the adjoint mixing-plane interface, necessary to compute sensitivities involving

multi-row domains. The adjoint-based sensitivity results were compared to FD approxima-

tions with which very good agreement was obtained. Throughout the verification process,

the weaknesses of the FD method were highlighted, particularly their sensitivity to the

perturbation step. While the adjoint method required one additional solver run for each

function of interest, with a computational cost similar to flow direct run in terms of CPU

time, the finite-difference approach required many direct solver runs to obtain a converged
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value, thus emphasizing the benefits of using the adjoint method for sensitivity analysis,

particularly when a large number of design variables is used. With the confidence on the

correctness of the results given by the multi-row adjoint solver, the following chapter will

present results of sensitivity analyses using this verified adjoint solver.
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Chapter 7

Sensitivity Analysis of a Stator/Rotor

Stage of a Low Pressure Turbine

This chapter presents a comprehensive analysis of various sensitivities, obtained of the

stator/rotor stage introduced in chapter 6, using the adjoint multi-row solver.

The chapter is divided in three sections, 1) sensitivity to boundary conditions, 2)

sensitivity to blade shape and hub geometry and 3) aero-thermal sensitivity analysis. All

provide extremely important information to the engineer interested in designing a new

turbomachine component or trying to improve an existing one.

The performance metrics I presented in this chapter are the ones described in the

previous chapter, namely rotor efficiency ηrotor, stage efficiency ηstage, rotor pressure ratio

πrotor, stage pressure ratio πstage, and the area averaged total temperature TTa.

Similarly to the previous chapter, a summary of the results presented in the current

chapter is displayed in table 7.1. The table is divided intro three sections, corresponding

to the three sections of this chapter.

This selection of results aims to highlight the coupling between the rows, by showing

how various metrics are influenced by parameters defined across the individual row domains.

The choice of presenting the same metrics for both stage and rotor will evidence the impact

of considering the metric of the full stage in contrast to considering only one row (the

rotor, in this case).
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dI
dα (TTa)rotor πrotor πstage ηrotor ηstage

Boundary
Conditions

pinletT - X X X X

V inlet
t - X X X X

hinletT - X X X X

φinlet - - - - -
pexits - X X - -

Blade Shape /
Hub Geometry

nblade - - X - X

rhub - - X - X

Aero-thermal
Analysis

pinletT X - - - -
hinletT X - - - -
V inlet
t X - - - -

Table 7.1: Selection of test cases included in verification of total derivatives.

7.1 Sensitivity to Boundary Conditions

Boundary conditions (BC) at inlet and exit surfaces are typically defined (as is the case of

the current solver) as radial profiles. The adjoint solver not only provides the sensitivity

to those radial 1D profiles, but also to all individual cells of the inlet/exit 2D surfaces.

Both results have their uses, while the full 2D results provide a more detailed insight to

the behavior of the performance metrics to changes in the BC quantities, the 1D profiles

can be directly used in optimization environment or manual tweaking of the operating

conditions of the component in analysis.

Recalling subsection 6.3.1, the quantities enforced at an inlet boundary are absolute

total pressure pT , absolute total enthalpy hT , absolute tangential velocity Vt, and velocity

direction cosines Cr and Cz. At an exit, the only imposed boundary condition is static

pressure ps. The following subsections present a selection of results of the analysis of how

the various boundary conditions quantities influence various performance metrics. The

results are presented grouped by performance metric.

7.1.1 Rotor and Stage Efficiencies

Figure 7.1 presents the normalized adjoint-based sensitivities of rotor and stage efficiencies

to inlet total pressure (dη/dpinlet
T ) at the inlet of the stage (stator inlet). This represents the

impact that upstream conditions (in this case represented by the boundary conditions) have
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on components that are located downstream, such as is the case of rotor efficiency ηrotor.

The comparison between the two efficiencies aims to provide insight of how considering the

stage globally instead of focusing on one component may impact the direction on which

the parameters must evolve to improve efficiency.

The contour plots show similar locations of the areas of high and low sensitivities. The

main difference between the two cases is the magnitude of the sensitivity, which is higher

(although in the same order of magnitude) for the case of stage efficiency. This comes as

expected, as, since stage efficiency is computed from averaging on the inlet of the stage,

where the boundary conditions are imposed for this particular case. The high positive

sensitivity of the efficiency to inlet total pressure near the hub and the casing, particularly

in the region between the blades, indicates that increasing the inlet total pressure in that

region leads to an improvement of the efficiency of the stage, which might be due to the

decrease of the viscous effects on the endwall. Right next to this positive high valued

sensitivities near the hub, a large region of strong negative sensitivities is very clear. The

hub and casing regions are crucial in a turbomachine component due to the secondary flow

phenomena occurring in that region. As such, high sensitivities to boundary conditions

in those regions are to be expected. In the mid-span region, between the blades another

region of strong sensitivities is clear (albeit not as strong as in the hub). This indicates that

increasing the velocity of the flow in that region, leading to an increase of total pressure,

would also increase the efficiency of the stage.

The difference in magnitude of sensitivity of the two performance metrics is particularly

visible near the hub and the casing, where the stage efficiency is much more sensitive to

inlet total pressure, which can be easily seen from figure 7.2, where the radial profiles of

sensitivity and total pressure are plotted. In this figure, a difference in magnitude in the

region near the casing (span = 1) is also noticeable, as well as the difference in magnitudes

of the sensitivities. The sensitivity to inlet total pressure of rotor efficiency is clearly lower

than of stage efficiency, with a difference in total (area averaged) sensitivity of 18%. This

trend is expected as the diffusion of the flow in the stator tends to "dissipate" the influence

of the inlet conditions in quantities computed at downstream locations.

In figure 7.3 we compare the sensitivity of the rotor efficiency to total pressure at

the rotor inlet (top) against the sensitivity of the stage efficiency to the same quantity

at the stage inlet (bottom). The values are normalized by the maximum value of the
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(a) I = ηrotor (stage inlet)

(b) I = ηstage (stage inlet)

Figure 7.1: Adjoint-based sensitivity of rotor and stage efficiencies to stage inlet total
pressure dη/dpinlet

T (normalized values).

Figure 7.2: Radial distribution of stage inlet total pressure and adjoint-based sensitivities
of rotor and stage efficiencies to stage inlet total pressure profiles (normalized values).

112



two solutions. In this comparison we see that, although the difference between the two is

not as evident as in the previous case (see figure 7.1), the stage efficiency shows higher

local sensitivity to total pressure, although maintaining the same qualitative shape of the

contour.

(a) I = ηrotor (rotor inlet)

(b) I = ηstage (stage inlet)

Figure 7.3: Adjoint-based sensitivity of rotor and stage efficiencies to respective inlet total
pressure dη/dpinlet

T (normalized values).

Inlet tangential velocity Vt can be related to flow distortions resulting from the tur-

bomachines being operating at off-design conditions [124]. Its influence on the stage and

rotor efficiencies, dη/dV inlet
t , shown in figure 7.4, presents the same behavior as inlet total

pressure, with the magnitude of the stage sensitivities being higher than the sensitivities

across the stator. The contour plots show that reducing the tangential velocity in the area

between the blades leads to an increase in efficiency, both when looking to rotor or to

stage efficiency. The opposite occurs near the hub, where we observe positive sensitivity,

against the overall tendency across the inlet surface. This region also presents values of

higher magnitude than in the rest of the domain, highlighting once again the importance

of the endwall region in the performance of the stage. Comparing the results of sensitivity

to tangential velocity to inlet total pressure, particularly in the region between the blades
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and near the hub reveals that the region of positive sensitivities to inlet total pressure

presents negative sensitivities to tangential velocity.

(a) I = ηrotor (stage inlet)

(b) I = ηstage (stage inlet)

Figure 7.4: Adjoint-based sensitivity of rotor and stage efficiencies to stage inlet tangential
velocity dη/dV inlet

t (normalized values).

In figure 7.5, the adjoint-based sensitivity profiles of rotor and stage efficiencies to

inlet tangential velocity are compared to each other. The values presented are normalized

by the absolute maximum of the two profiles. Much like the case of inlet total pressure,

although the two profiles present similar shapes, the magnitude of the sensitivity to rotor

efficiency is considerably smaller than to stage efficiency.

The influence of inlet total enthalpy on the two efficiency metrics in analysis presents

a different behavior than the previous quantities. In figure 7.6, higher local values of

dη/dhinlet
T are visible for the case of rotor efficiency than stage efficiency. The shape of the

contour is also quite different, particularly in the mid-span region. The tendency for higher

(negative) sensitivities near the hub and casing is present in both cases. In figure 7.7, the

swap in difference of magnitudes between the two cases is even more noticeable.

The comparison of the influence of total enthalpy at the rotor and stage inlets on

rotor and stage efficiencies, respectively, is presented in figure 7.8. These sensitivities
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Figure 7.5: Comparison between adjoint-based sensitivity of stage and rotor efficiencies to
inlet tangential velocity ∂η∗/∂V inlet

t (normalized values).

(a) I = ηrotor (stage inlet)

(b) I = ηstage (stage inlet)

Figure 7.6: Adjoint-based sensitivity of rotor and stage efficiencies to stage inlet total
enthalpy dη/dhinlet

T (normalized values).
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Figure 7.7: Comparison between adjoint-based sensitivity of stage and rotor efficiencies to
inlet total enthalpy (normalized values).

follow the same behavior as when assessing stage inlet boundary conditions only, with the

rotor efficiency presenting higher local sensitivity to rotor inlet total enthalpy than stage

efficiency is to stage inlet total enthalpy. It is also clear from this figure, the importance

of the endwall regions, where the magnitude of the derivatives are much higher than on

the rest of the inlet region.

Figure 7.9 shows the normalized averaged radial profile of the three sensitivities an-

alyzed previously, dηrotor/dhstage inlet
T , dηrotor/dhrotor inlet

T and dηstage/dhstage inlet
T . From the

figure, we see the higher magnitude of sensitivity for the single-row case near the hub

when compared to the multi-row sensitivities. Near the casing, we see that dηrotor/dhinlet
T

presents higher values than the other two.

The influence of the stage exit static pressure on both efficiencies in analysis is presented

in figure 7.10, where it is visible that the influence of exit static pressure is higher if we look

only at the efficiency of the rotor than the whole stage. Both results show that an increase

in the stage exit static pressure will result in an improvement of the efficiency. This is

particularly evident in the region further away from the trailing edge, which indicates that

the effect of reducing the flow speed in the region below the blades would result in an

increase of efficiency (as it leads to an increase of static pressure).
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(a) I = ηrotor (rotor inlet)

(b) I = ηstage (stage inlet)

Figure 7.8: Adjoint-based sensitivity of rotor and stage efficiencies to respective inlet total
enthalpy dη/dhinlet

T (normalized values).

Figure 7.9: Comparison between (normalized) adjoint-based sensitivity of stage and rotor
efficiencies to inlet total enthalpy.
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(a) I = ηrotor (stage exit)

(b) I = ηstage (stage exit)

Figure 7.10: Adjoint-based sensitivities of stator and stage efficiencies ratio to stage exit
static pressure, dη/dpexit.
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7.1.2 Rotor and Stage Pressure Ratio

In this subsection we look at how both rotor and stage pressure ratios are influenced by

the various stage boundary conditions quantities.

Figure 7.11 presents the sensitivities obtained by selecting pressure ratios πrotor and

πstage as functions of interest in the adjoint system of equations, for the case of inlet total

pressure. Both cases (rotor pressure ratio and stage pressure ratio) present mainly negative

values of dπ/dpinlet
T across the inlet, with the exception of two regions near the hub and

casing. Comparing the two cases, a region of higher (negative) sensitivity close to the hub

is observed in the case of πstage and not on the other. The overall values tend to be higher

in magnitude when considering the whole stage than considering only the pressure ratio

at the rotor.

(a) I = πrotor (stage inlet)

(b) I = πstage (stage inlet)

Figure 7.11: Adjoint-based sensitivity of rotor and stage pressure ratios to stage inlet total
pressure dπ/dpinlet

T (normalized values).

From figure 7.12 we can observe a reversion of the sign of the impact of tangential

velocity at the stage inlet to rotor and stage pressure ratios. While increasing the tangential

velocity at most of the inlet will lead to an increase of the pressure ratio of the stator, the
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same change in tangential velocity would decrease the pressure ratio across the whole stage.

This reversion of sign is made clearer in figure 7.13, where the averaged radial profiles of

(a) I = πrotor (stage inlet)

(b) I = πstage (stage inlet)

Figure 7.12: Adjoint-based sensitivity of rotor and stage pressure ratios to stage inlet
tangential velocity dπ/dV inlet

t (normalized values).

the two quantities are presented. The value of dπstage/dV inlet
t remains negative for most

of the span, with the exception of a region near the hub.

Looking at the sensitivity of the rotor and stage pressure ratios to stage exit static

pressure, presented in figure 7.14, the differences between the two are much less pronounced

than for the case of rotor and stage efficiencies. The whole boundary region has positive

values of dπ/dpexit, as the exit pressure is in the numerator of the expression of the pressure

ratio, and the higher values are midspan between the hub and the casing, aligned with

the rotor wake. A possible interpretation of this result is that reducing the blockage effect

of the blade would lead to an increase in the pressure ratio.

Both stage and rotor pressure ratios show similar sensitivity to the values of static

pressure at the exit of the stage, as seen in figure 7.14, with very small difference both in

magnitude and in the shape of the contour plot.
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Figure 7.13: Comparison between (normalized) adjoint-based sensitivity of stage and rotor
pressure ratios to stage inlet tangential velocity.

(a) I = πrotor (stage exit)

(b) I = πstage (stage exit)

Figure 7.14: Adjoint-based sensitivities of stator and stage pressure ratio to stage exit
static pressure dπ/dpexit.
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7.2 Sensitiviy to Blade Shape and Hub Geometry

This section presents the adjoint-based sensitivity analysis of the previously mentioned

performance metrics to the shape of the blades and hub of the low pressure turbine

stator/rotor stage in study. The results are first sorted by sensitivity to blade shape and

hub geometry and, for each, sorted by performance metric.

7.2.1 Blade Shape

The most obvious modification that one can think of performing in a turbomachine to

improve its performance is the shape of its blades.

The adjoint-based sensitivity of stage efficiency and stage pressure ratio to the shape

of the blade is presented in figures 7.15 and 7.16, respectively. Similarly to the results

presented in subsection 6.6.4, the contour of these two figures is the magnitude of the

sensitivity vector projected onto the blade surface outer normal, as defined by equation (6.7).

The values are normalized by the maximum sensitivity of the two results (efficiency and

pressure ratio), in order to allow the comparison of magnitude between the two.

It is clear that the efficiency is much more sensitive to the shape of the blade than

the pressure ratio. Although for the stator blade pressure side the derivatives of the two

metrics are qualitatively similar, with both metrics increasing with the movement of the

surface towards the outer normal, the same is not visible for the stator blade suction side.

In the suction side of the blade of the stator, a movement in the outer normal direction,

increasing thickness, leads to an increase of the efficiency of the stage. Contrary to this,

the sensitivity information for the pressure ratio shows that moving the blade surface

inward would lead to an increase of total pressure ratio.

7.2.2 Hub Geometry

As previously mentioned, the modification of the hub and/or casing shape, often referred

as endwall contouring, can significantly impact secondary flows, leading to significant

performance improvement of the turbomachine.

The sensitivity of the rotor and stage efficiencies to the radial position of the mesh

grid nodes of the hub is presented in figure 7.17. The sensitivity to radial position is

obtained from the sensitivity to x- and y-coordinates with the transformation defined by
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(a) Stator pressure side / Rotor suction side

(b) Stator suction side / Rotor pressure side

Figure 7.15: Adjoint-based sensitivity of stage efficiency ηstage to blade shape in normal
direction (normalized values).
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(a) Stator pressure side / Rotor suction side

(b) Stator suction side / Rotor pressure side

Figure 7.16: Adjoint-based sensitivity of stage pressure ratio πstage to blade shape in normal
direction (normalized values).
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equation (6.8), meaning that, for the presented figures, positive values of ∂η/∂rhub indicate

that moving the surface nodes in the direction of the casing (or the viewer) would increase

the efficiency. It should also be noted that the computational domains are repeated axially

in these figures to better visualize the sensitivity results.

In figure 7.17a it is visible that creating a hump of the hub surface along the stator

profile would lead to an increase of the rotor efficiency. Similarly, the negative sensitivity

near the trailing edge of the suction side of the stator indicates the need to create a

depression by moving the hub surface away from the casing. This particular information

is contradicted if we look at the efficiency of the whole stage, in figure 7.17b, where

the same area of negative values of ∂ηrotor/∂rhub now presents mainly positive values for

∂ηstage/∂rhub. The discrepancy between the two sensitivities highlights the importance of

taking the coupling between blade rows into account. The sensitivity to the geometry of

the hub of the rotor is very similar for the two cases, indicating that a depression (negative

bump) between each blade would lead to an increase in efficiency.

Regarding the pressure ratio of the rotor alone or the whole stage, their sensitivities to

the hub geometry are presented in figure 7.18. The values in these figures are normalized

by the absolute maximum of ∂ηrotor/∂rhub, ∂ηstage/∂rhub, ∂πrotor/∂rhub and ∂πstage/∂rhub,

to better visualize the difference in magnitude between the sensitivity to the two types of

performance metrics, efficiency and pressure ratio. The difference in magnitude is quite

clear between the sensitivities of the two metrics, with the pressure ratio being much less

sensitive to changes in the hub surface nodes.

7.2.3 Improving Stage Efficiency with Endwall Contouring

Based on the findings presented in the previous subsection, an attempt to improve the

stage efficiency by contouring the hub of the rotor through the application of two bumps

on its surface is now presented. The locations of the bumps were selected from the analysis

of the adjoint-based sensitivities to the hub geometry presented in figure 7.17b, and their

height selected using a line search procedure performed manually.

Looking again at figure 7.17b, it shows that the hub region between the blades, at an

streamwise location equal to the leading edge of the rotor blade presents high (negative)

influence on the stage efficiency. The hub region close to the suction side of the rotor blade

also presents relatively high (positive) influence. As such, these two regions were selected
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(a) I = ηrotor

(b) I = ηstage

Figure 7.17: Sensitivity of rotor and stage efficiencies to radial perturbation of hub mesh
nodes ∂η/∂rhub (normalized values).
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(a) I = πrotor

(b) I = πstage

Figure 7.18: Sensitivity of rotor and stage pressure ratios to radial perturbation of hub
mesh nodes ∂π/∂rhub (normalized values).
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to impose the bumps, which are represented in figure 7.19. The bumps are imposed on

Figure 7.19: Hicks-Henne bumps imposed on the rotor hub.

the hub by perturbing its surface (Xs) in the radial direction by an amount given by the

Hicks-Henne bump function [125], defined as

∆Xs,i =
Nb∑
j=1

hj

[
sin

(
πx̂

log 0.5
log tc,1,j
1,i

)]tw,1,j
[
sin

(
πx̂

log 0.5
log tc,2,j
2,i

)]tw,2,j
,

(7.1)

where Nb is the number of bumps; hj is the amplitude (peak height) of bump j; x̂1,j and

x̂2,j are the normalized coordinates of vertex i in the two directions θ and z, respectively;

tc,1,j and tc,2,j define the location of the peak of bump j; and tw,1,j and tw,2,j define how

spread the bump is in each location (higher values lead to a less spread bump). The interior

mesh nodes Xv are modified using an inverse distance weight interpolation scheme [126]

as

∆Xv,j =
∑Ns
i=1 ∆Xs,i/r

p
j,i∑Ns

i=1 1/rpj,i
, (7.2)

where Ns is the number of surface nodes; rj,i is the distance from the interior node j to

the surface node i and p is the power parameter. The sensitivity of the mesh nodes to

the Hicks-Henne bumps height parameter hj is obtained from a first-order finite difference
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approximation, computed using the original and modified grids, as

dX
dhj

= X∗ −X
hj

, (7.3)

where X is the original mesh and X∗ is the modified mesh from the imposition of a

bump. This sensitivity is used, together with the adjoint-based sensitivity of the various

performance metrics w.r.t. the mesh dI/dX, to compute the total sensitivty of the metrics

w.r.t. the height parameters as

dI
dh =

(
∂I
∂X
−ψT ∂R

∂X

)
dX
dh . (7.4)

The resultant gradients are presented in figure 7.20. These gradients indicate that: i)

Figure 7.20: Sensitivity of stage performance metrics to bumps height.

introducing a negative bump (inwards) near the leading edge (bump 1) would translate

into an increase of the stage efficiency, total pressure ratio and mass flow; ii) a positive

displacement (outwards) of bump 2 would translate into an increase of the stage efficiency

and mass flow while reducing the stage total pressure ratio.

Should this information be used by a gradient-based numerical optimization algorithm,

such as steepest descent, the bump height parameters, h1 and h2, would be perturbed

along the search direction according to

h = (h1, h2) = β

(
dηstage

dh1
,
dηstage

dh2

)
, (7.5)

where a line search procedure would be performed to find the optimal value of β that

maximizes ηstage. The results of a procedure similar to the line search, performed manually,
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are presented in figure 7.21, where the variation of ṁexit, ηstage and πstage relative to the

baseline is plotted for different values of β. The behavior of the stage efficiency is as

Figure 7.21: Variation of the stage performance metrics with the perturbation step param-
eter β.

one would expect, increasing with β up to a certain point (between 0.05 and 0.08 in the

present case) and then decreasing. The mass flow at the exit of the stage presents a similar

variation (in percentage) to the stage efficiency, although with smaller magnitude. On

the other hand, the stage total pressure ratio shows a slight decrease as the bumps are

perturbed following the search direction given by dηstage/dh.

A value of β = 0.06 was selected from figure 7.21, which is roughly near the value that

maximizes ηstage, that translates into an efficiency improvement of approximately 0.03%

and a maximum bump height of approximately 0.8% of the rotor blade span, as shown in

figure 7.22. The relatively small expected efficiency improvement can be explained by the

already tuned low pressure turbine stage test case we used, but also it might indicate that

the number of bumps should be extended to provide a larger design space.

The improvement of the stage efficiency with the application of the "optimal" bumps is

the result of a modified flow field. An attempt to identify the main flow features responsible

for the stage efficiency improvement is now presented.

Figure 7.23 presents the original and modified pressure fields (normalized values) due

to the presence of the two bumps, in an XY plane located at the center of the first bump,

as well as the relative difference between the two, computed as

∆p =
(p)bumps − (p)base

(p)base
× 100 , (7.6)
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Figure 7.22: Radial displacement imposed on the rotor hub (in % of blade span).

meaning that positive difference values represent an increase from the baseline to the

modified pressure flow field. The increase of pressure due to the negative bump (concave)

is evident but there is also a reduction in pressure near the suction side of the blade.

Figure 7.24 presents the pressure field in an XY plane located at the center of the

second bump. In this case, the presence of the bumps only reduces the pressure in that

plane, particularly in the region near suction side of the blade.

Figure 7.25 shows the original radial velocity component as well as its variation due

to the presence of the two bumps, in an XY plane located at 85% of the blade chord.

Both the velocity and difference values are normalized by the maximum radial velocity in

the rotor passage. The two bumps create a deficit in the velocity in the radial direction

(figure 7.25b), reducing the mixture of the boundary layer with the flow. This region

contains relatively high velocity in the radial direction, as also seen in figure 7.26a that

illustrates a set of streamtraces along the rotor blade passage. The secondary flow created

at the interface hub-blade is clearly visible in the streamtraces. The effect of the bumps

is visible in figure 7.26b, where the streamtraces remain closer to the surface than in the

original geometry, reducing its detrimental impact on the performance, thus increasing

the efficiency.

The original radial velocity field in a XY plane located behind the rotor blade is

presented in figure 7.27a, normalized by the maximum radial velocity in the rotor passage.

The region of higher mixture of the boundary layer, highlighted in figure 7.26, is visible
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(a) Original pressure field (b) Modified pressure field

(c) Relative pressure difference

Figure 7.23: Pressure field change due to the two bumps on the rotor hub at an XY plane
centered at bump 1.
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(a) Original pressure field (b) Modified pressure field

(c) Relative pressure difference

Figure 7.24: Pressure field change due to the two bumps on the rotor hub at an XY plane
centered at bump 2.
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(a) Original radial velocity (b) Velocity difference

Figure 7.25: Radial velocity change due to the two bumps in the rotor hub at an XY plane
at 85% chord (normalized values).

(a) Original (b) Modified hub

Figure 7.26: Streamtraces along the rotor blade passage.
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from the higher values of radial velocity below the trailing edge. The presence of the two

(a) Original radial velocity (b) Velocity difference

Figure 7.27: Radial velocity change due to the two bumps in the rotor hub at an XY plane
behind blade (normalized values).

bumps mitigate this by trying to homogenize the radial velocity profile in the pitchwise

direction, which is clear in figure 7.27b, where the variation in the radial velocity due to

the bumps is presented, along with the vector field of the variation of velocity.

7.3 Thermal Sensitivity Analysis

So far, the sensitivity analyses presented have been relative to aerodynamic metrics of

performance. While the designer might want to increase the efficiency or pressure ratio of

a stage (or sequence of stages), he might me constrained to what can be achieved due to

heat transfer to the blades. This is particularly important for high pressure turbines, where

the temperatures can be very large leading to special materials, such as ceramic-matrix

composites [127], and cooling of the blades through film or jet cooling [128] must be used

to allow the turbine blades to withstand such conditions.

This section presents a series of results of sensitivity analysis of the area averaged total

temperature at the surface of the blade of the rotor, (TTa)rotor to various inlet boundary

conditions quantities.

The sensitivity of (TTa)rotor to stage inlet total pressure pinlet
T is presented in figure 7.28.

From this sensitivity information we can see that, apart from a region very close to the
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hub and casing, the main trend is that an increase of inlet total pressure will result in a

decrease of (TTa)rotor.

Figure 7.28: Adjoint-based sensitivity of rotor blade vane averaged total temperature
(TTa)rotor to stage inlet total pressure pinlet

T (normalized values).

Figure 7.29 presents the sensitivity of (TTa)rotor to stage inlet total enthalpy hinlet
T . In

this case, we have only positive sensitivities, which is expected, since enthalpy is directly

related to temperature of the flow. Larger sensitivities are observed far away from the hub

and casing and in the region between blades. Recalling figure 7.6, where the sensitivity

of rotor and stage efficiencies to stage inlet total enthalpy is presented, we can infer that,

as dηrotor/dhinlet
T and dηstage/dhinlet

T are mainly negative across the inlet, an increase in

efficiency by tweaking the temperature of the flow would lead to a decrease in the average

temperature of the blade of the rotor as well. Again, an expected result since efficiency is

a measure of how close the expansion of the flow is to an isentropic process.

Figure 7.29: Adjoint-based sensitivity of rotor blade vane averaged total temperature
(TTa)rotor to stage inlet total enthalpy hinlet

T boundary condition (normalized values).

The last case presented in this section regarding boundary conditions is the sensitivity

of (TTa)rotor to stage inlet tangential velocity V inlet
t , shown in figure 7.30. In this case, we

see two regions of negative and positive sensitivities close to the hub, a large region of
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negative sensitivities midspan of the blade, and a region of positive sensitivities closer

to the casing, in the region between blades. These sensitivities are, in a large region

of the inlet, opposite to the sensitivities dπ/dV inlet
t presented in figure 7.12, indicating

that, as in the case for stage inlet total enthalpy, an attempt to decrease the pressure

ratio of the stage by tweaking the tangential velocity at the inlet might translate into

an increase in the averaged total temperature at the rotor blade surface. These results

Figure 7.30: Adjoint-based sensitivity of rotor blade vane averaged total temperature
(TTa)rotor to stage inlet tangential velocity V inlet

t boundary condition (normalized values).

highlight the importance of assessing not only aerodynamic metrics or performance, but

also aero-thermal metrics in the design or optimization of a turbomachine component.

7.4 Final Remarks

This chapter presented an application of the adjoint solver to the sensitivity analyses of a

stator-rotor stage of a low pressure turbine. This was possible due to the adjoint mixing-

plane whose formulation and implementation was the core of this work. The various

sensitivity results presented in this chapter highlighted the coupling between the rows

(stator and rotor) and served as an example of how the sensitivity analysis could be used by

a designer to obtain insight on the influence of various parameters on certain performance

metrics.

The results were also computed with a computational cost many orders of magnitude

lower than that required by traditional methods such as finite-differences. The two row

computational domain contained 540 cells at the inlet of the stage, and 570 at its exit.

In terms of surface mesh grid nodes, each domain contained approximately 4,000 mesh

grid nodes on the blade surface and 1,000 on the surface of the hub. Had the sensitivities
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exhibited in this chapter been computed with finite-differences, at least more than 30,000

flow re-evaluations would have been required, which for the case of study at hand would

have translated to more than a year of CPU time, as detailed in table 7.2. This is a

conservative estimate given the assumption that an optimal step perturbation size was

known à priori.

Stator Rotor Nα Flow evaluations CPU Time
Inlet 540 - 5 2,700
Exit - 570 1 570
Hub 1,000 1,000 3 6,000
Blade 4,000 4,000 3 24,000

Time = 20 min × 33,270 ≈ 462 days

Table 7.2: Hypotetical time requirements for equivalent of adjoint-based sensitivity analysis
with finite-differences.
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Chapter 8

Conclusions

The work presented in this document comes from a growing necessity for the turboma-

chinery industry to have higher fidelity tools, particularly of efficient sensitivity analysis

tools, which are of the utmost importance as numerical optimization is nowadays a de-

sired tool for extracting the highest performance of already very highly tuned components.

Turbomachines are typically composed of many stages of compressors and/or turbine

stator-rotor rows to achieve higher ratios of compression and/or expansion and, as such,

the consideration of the interaction between the various rows is absolutely required for

the improvement of their performance. Therefore, the use of multi-row coupling in the

numerical simulation of turbomachinery is vital for the optimization of these very com-

plex machines, as considering single individual components becomes a limitation, albeit

providing valuable information of certain phenomena.

An adjoint solver had been previously developed for the sensitivity analysis of turbo-

machinery, based on a legacy CFD solver, using an hybrid approach called ADjoint which

merged the discrete adjoint method with the use of Automatic Differentiation (AD) tools

to obtain routines for the computation of the partial derivatives required to assemble the

adjoint system of equations and the adjoint-based sensitivity formula.

The adjoint method is an efficient and accurate approach for the estimation of sensitivity

information when the problem in analysis involves a large number of design variables, which

far exceed the number of functions of interest. Even when the governing equations are

computationally cheap and allow finite-difference approximations, these last introduce

numerical uncertainty in the sense that they may be very sensitive to the perturbation

step.
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The discrete adjoint approach provides a well defined procedure to derive the adjoint

equations which is nearly independent of the complexity of the governing equations. The

treatment of arbitrary functions of interest with the discrete adjoint approach, when

compared to the continuous approach, is much simpler as it is not limited to specific form

of integral functions. The gradients obtained with the discrete approach are also consistent

with the flow solver, which is highly beneficial for numerical optimization.

However, this legacy adjoint solver lacked the capacity of handling multi-row simulations

and, therefore, it could not provide the so important information of the coupling between

the various rows of the turbomachine components. Implementing the capability of handling

such simulations on the adjoint was therefore extremely important.

The formulation of the adjoint counterpart of the mixing-plane of the CFD solver was

developed by first dividing the mixing-plane algorithm in various steps and applying the

chain rule to the derivative of each step, thus obtaining the linearization of the complete

procedure.

The implementation of the theoretical formulation into the single-row adjoint solver

was performed using the same hybrid approach used to develop the legacy adjoint solver,

by rewriting the original routines corresponding to each of the steps considered in the

formulation of the problem and applying an AD tool to obtain differentiated routines. The

use of AD tools allowed the linearization of the mixing-plane algorithm while maintaining

the consistency with the original implementation in the direct flow solver, but required

special treatment of certain features of the original code, such as dynamic allocatable arrays

inside of custom data structures, or MPI communications, which could not be correctly

differentiated using the AD tool. These differentiated routines were then hand-assembled

to obtain complete differentiation of the mixing-plane procedure. This hand-assembly

came as a requirement to maintain consistency with the original flow solver.

A numerical verification of the implementation was performed and some selected re-

sults were presented for a test case comprising of an axial turbine stator-rotor stage.

Various functions of interest were considered and their sensitivity to inlet boundary con-

ditions or blade and hub geometries were presented and the adjoint-based sensitivities

compared with first-order finite-difference approximations. The relative differences between

the adjoint-based and FD-based methods revealed very good agreement of both methods,

with differences below 1% for the majority of the presented cases, which attested both the
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correct formulation and implementation of the multi-row capability.

The verification of the implementation also highlighted the benefits of using an adjoint

solver for the computation of sensitivities versus the traditional finite-difference method.

While the adjoint method required one additional solver run for each function of interest,

with a computational cost similar to flow direct run in terms of CPU time, the finite-

difference approach required many direct solver runs to obtain a converged value, just to

obtain a small fraction of the results given by the adjoint solver.

A more in depth analysis of the sensitivity results of the test case was presented in

the final chapter, with a selection of cases that intended to show not only the plethora of

information that the adjoint solver is able to provide but also to highlight the physical

coupling between the two rows, and thus, the importance of coupled multi-row analysis

and design of turbomachinery. A prediction of the time necessary to obtain the same

sensitivity information given by the adjoint solver with finite-differences indicated that

more than one year of CPU time would have been necessary to evaluate all the necessary

variable perturbations.

By using the adjoint solver with handling of the multistage interface between adja-

cent rows, it is possible to efficiently and accurately quantify the impact of: i) boundary

inlet conditions to downstream blade rows performance; ii) boundary exit conditions to

upstream rows performance; iii) upstream blade or hub/casing shapes to downstream row

performance; and iv) downstream blade or hub/casing shapes to upstream row perfor-

mance.

The proposed inclusion of adjoint multistage handling in a gradient-based multistage

turbomachinery design framework is thus paramount to achieve the best overall results,

both in terms of computational cost but mainly in terms of optimal design outcome.

8.1 Achievements

The main goal of the present work was to implement the capacity to handle multi-row

turbomachinery problems into a legacy adjoint solver. A formulation for the differentiation

of the mixing-plane algorithm was presented and its correctness proved by the verification

of its numerical implementation. From the close agreement with the sensitivity information

obtained with the improved adjoint solver with finite-difference approximations, the main
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goal can be considered achieved.

Not only can the improved adjoint solver handle multi-row problems to single row

metrics of performance, but the computation of new multi-row performance metrics was

also implemented, namely the multi-stage efficiency and total pressure ratio.

The formulation here presented can guide future users in the developing of adjoint

counterparts of similar features in numerical solvers.

With the finalization of the work presented in this document, the adjoint solver is now

capable of handling steady simulations of arbitrary number of blade rows, thus providing

the designer a very large set of information.

8.2 Future Work

With the adjoint mixing-plane interface implemented, the clearer path to future work

is its application in the sensitivity analysis and design of better performing multi-row

turbomachinery components, through the incorporation of the sensitivity information

given by the adjoint solver into a numerical gradient-based optimization framework.

The application of the solver to larger problems comprising various blade rows would

surely provide very interesting information, and serve as another proof of capability of

the implemented adjoint-solver. This will come naturally as the developed tool is made

available to the sponsor jet engine manufacturer.

Finally, as the available computing power is growing, unsteady multi-stage simulations

are starting to be performed in the analysis and design of turbomachinery to better

replicate the flow physics. As such, extension of the adjoint solver to handle unsteady

simulations should be pursued, either by using explicit time integration or harmonic balance

techniques.
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